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Dimension theory of arbitrary modules over finite
von Neumann algebras and L?-Betti numbers I:
Foundations
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By Wolfgang Liick at Miinster

Abstract. We define for arbitrary modules over a finite von Neumann algebra .o/ a
dimension taking values in [0, co] which extends the classical notion of von Neumann
dimension for finitely generated projective .«7-modules and inherits all its useful properties
such as Additivity, Cofinality and Continuity. This allows to define L?-Betti numbers for
arbitrary topological spaces with an action of a discrete group I" extending the well-known
definition for regular coverings of compact manifolds. We show for an amenable group
I’ that the p-th L*-Betti number depends only on the CI-module given by the p-th singular
homology.

0. Introduction

Let us recall the original definition of L?-Betti numbers by Atiyah [2]. Let M — M
be a regular covering of a closed Riemannian manifold M with I' as group of deck
transformations. We lift the Riemannian metric to a I'-invariant Riemannian metric on M.
Let L* QP (M) be the Hilbert space completion of the space C7 QP (M) of smooth R-valued
p-forms on M with compact support and the standard L?-pre-Hilbert structure. The Laplace
operator 4, is essentially selfadjoint in L*QP(M). Let A = [ ZdE? be the spectral decom-
position with right-continuous spectral family {EF|1e R}. Let EP(X, y) be the Schwartz
kernel of E¥. Since E? (X, X) is an endomorphism of a finite-dimensional real vector space,
its trace try (EP (%, ¥)) € Ris defined. Let % be a fundamental domain for the I'-action on M.
Define the analytic L*-Betti number by

(0.1) b (3) = | try (EJ (%, ¥))dvol, [0, ).

By means of a Laplace transformation this can also be expressed in terms of the heat
kernel e~ " (%, ) on M by
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136 Liick, von Neumann algebras and L*-Betti numbers 1

0.2) bR (M):= lim | trg(e”"»(X, X))dvol, €[0,0).

t=> 0 gz

The p-th L*-Betti number measures the size of the space of smooth harmonic L?-integrable
p-forms on M and vanishes precisely if there is no such non-trivial form. For a survey on
L*-Betti numbers and related invariants like Novikov-Shubin invariants and L*-torsion
and their applications and relations to geometry, spectral theory, group theory and K-theory
we refer for instance to [14], section 8, [18], [22] and [27]. In this paper, however, we
will not deal with the analytic side, but take an algebraic point of view.

The L*-Betti numbers can also be defined in an algebraic manner. Farber [12], [13]
has shown that the category of finitely generated Hilbert .o/-modules for a finite von
Neumann algebra ./ can be embedded in an appropriate abelian category and that one
can treat L?*-homology from a homological algebraic point of view. Farber gives as an
application for instance an improvement of the Morse inequalites of Novikov and Shubin
[25], [26] in terms of L?-Betti numbers by taking the minimal number of generators into
account. An equivalent more algebra oriented approach is developed in [21] where it is
shown that the category of finitely generated projective modules over .7, viewed just as a
ring, is equivalent to the category of finitely generated Hilbert .«7-modules and that the
category of finitely presented .o7-modules is an abelian category. This allows to define for
a finitely generated projective .o7-module P its von Neumann dimension

(0.3) dim_, (P) e [0, o)

by using the classical definition for finitely generated Hilbert .o/-modules in terms of the
von Neumann trace of a projector. This will be reviewed in Section 1.

In Section 2 we will prove the main technical result of this paper that this dimension
can be extended to arbitrary .oZ-modules if one allows that the value may be infinite (what
fortunately does not happen in a lot of interesting situations). Moreover, this extension
inherits all good properties from the original definition for finitely generated Hilbert .o7-
modules such as Additivity, Cofinality and Continuity and is uniquely determined by these
properties. More precisely, we will introduce

Definition 0.4. Define for an .«Z-module M
dim’ (M) := sup {dim(P)| P = M finitely generated projective .«Z-submodule} € [0, c0]. O

Recall that the dual module M* of a left .o/-module is the left .o/-module hom,, (M, /)
where the .o7-multiplication is given by (af)(x) = f(x)a* for fe M* xe M and ae /.

Definition 0.5. Let K be an .o/-submodule of the .«7-module M. Define the closure
of K in M to be the .o7-submodule of M

K:={xeM|f(x)=0 for all fe M* with K = ker(f)}.

For a finitely generated .«7-module M define the .«/-submodule TM and the .o/-quotient
module PM by:
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Liick, von Neumann algebras and L*-Betti numbers 1 137

TM:={xe M|f(x) =0 for all fe M*};

PM:=M/TM. O
The notion of TM and PM corresponds in [12] to the torsion part and the projective
part. Notice that TM is the closure of the trivial submodule in M. It is the same as the
kernel of the canonical map i(M): M — (M)* which sends x € M to the map M* — .o/,

f— f(x). We will prove for a finite von Neumann algebra .o/ in Section 2

Theorem 0.6. (1) of is semi-hereditary, i.e. any finitely generated submodule of a
projective module is projective.

(2) If K = M is a submodule of the finitely generated .</-module M, then M| K is finitely
generated and projective and K is a direct summand in M.

(3) If M is a finitely generated of -module, then PM is finitely generated projective and
M=PMPTM.

(4) The dimension dim’ has the following properties:

(a) Continuity.

If K< M is a submodule of the finitely generated o/ -module M, then:

dim’(K) = dim’(K).
(b) Cofinality.

Let {M;|i€l} be a cofinal system of submodules of M, i.e. M = | ) M; and for two

iel
indices i and j there is an index k in I satisfying M;, M; = M,. Then:
dim' (M) = sup{dim'(M,)|ie 1} .
(c) Additivity.
If 0 M, LM LM, 0 is an exact sequence of o/ -modules, then:

dim’ (M,) = dim’ (M) + dim' (M),

where r + s for r, s € [0, c0] is the ordinary sum of two real numbers if both r and s are not
oo and is oo otherwise.

(d) Extension Property.
If M is finitely generated projective, then:
dim’' (M) = dim(M).

(e) If M is a finitely generated o/ -module, then:
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138 Liick, von Neumann algebras and L*-Betti numbers 1

dim' (M) = dim(PM);
dim' (TM) = 0.

(f) The dimension dim' is uniquely determined by Continuity, Cofinality, Additivity and
the Extension Property. 0O

In the sequel we write dim instead of dim’. In Section 3 we will show for an inclusion
i: A — I that the dimension function is compatible with induction with the induced ring
homomorphism i: A" (4) — A°(I') and that A"(I") is faithfully flat over .4"(4) (Theorem
3.3). This is important if one wants to relate the L2-Betti numbers of a regular covering
to the ones of the universal covering. We will prove that I' is non-amenable if and only
if /' (I') ¢ Cis trivial (Lemma 3.4.2). This generalizes the result of Brooks [5], Remark
4.11.

In Section 4 we use this generalized dimension function to define for a (discrete)
group I' and a I'-space X its p-th L*-Betti number by

(0.7) b (X; (1)) = dimy ) (Hy (X; A1) € [0, 0],

where H, (X; A7(I')) denotes the 4" (I')-module given by the singular homology of X with
coefficients in the A" (I")-ZI'-bimodule A4"(I") (Definition 4.1). This definition agrees with
Atiyah’s definition 0.1 if X is the total space and I" the group of deck transformations of
a regular covering of a closed Riemannian manifold. We will compare our definition also
with the one of Cheeger and Gromov [7], section 2, Remark 4.12. In particular we can
define for an arbitrary (discrete) group I’ its p-th L?-Betti number

(0.8) BA(I):=bP(EI; N (I') €[0,00],

where EI' — BI is the universal I'-principle bundle. These generalizations inherit all the
useful properties from the original versions and it pays off to have them at hand in this
generality. For instance if one is only interested in the L2-Betti numbers of a group I" for
which BI' is a CW-complex of finite type and hence the original (simplicial) definition does
apply, it is important to have the more general definition available because such a group
I' may contain an interesting normal subgroup 4 which is not even finitely generated. A
typical situation is when I" contains a normal infinite amenable subgroup 4. Then all the
L?-Betti numbers of BI" are trivial by a result of Cheeger and Gromov [7], Theorem 0.2
on page 191. This result was the main motivation for our attempt to construct the extensions
of dimension and of L*-Betti numbers described above.

In Section 5 we will get the theorem of Cheeger and Gromov mentioned above as a
corollary of the following result. If I" is amenable and M is a CI'-module, then

(0.9) dim ., (Tors " (N (I'), #)) =0 for p 21,

where we consider A" (I") as an A"(I')-CI'-bimodule (Theorem 5.1). We get from (0.9) by
a spectral sequence argument that the L?-Betti numbers of a I'-space X depend only on
its singular homology with complex coefficients viewed as CI'-module, namely
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Liick, von Neumann algebras and L*-Betti numbers 1 139
(0.10) by (X; /() = dim./V(r)(JV(F) ®cr Hy" (X 0)),

provided that I' is amenable (Theorem 5.11). The result of Cheeger and Gromov mentioned
above follows from (0.10) since the singular homology of ET is trivial in all dimensions
except for dimension 0 where it is C.

We will discuss applications of this generalized dimension function to the Grothen-
dieck group G,(Cr’) of finitely generated CI'-modules and L*-Euler characteristics and
the Burnside group in part II of the paper [23].

1. Review of von Neumann dimension

In this section we recall some basic facts about finitely generated Hilbert-modules
and finitely generated projective modules over a finite von Neumann algebra. We fix for
the sequel

Notation 1.1. Let ./ be a finite von Neumann algebra and tr: .o/ — C be a normal
finite faithful trace. Denote by I' an (arbitrary) discrete group. Let A"(I") be the group
von Neumann algebra with the standard trace tr, .

Module means always left-module and group actions on spaces are from the left
unless explicitly stated differently. We will always work in the category of compactly
generated spaces (see [29] and [31], 1.4). O

Next we recall our main example for .o/ and tr, namely the group von Neumann
algebra N (I') with the standard trace. The reader who is not familiar with the general
concept of finite von Neumann algebras may always think of this example. Let /?(I") be
the Hilbert space of formal sums ) 7, -y with complex coefficients 4, which are square-

vyel'
summable,i.e. ) |4,]* < oo.Define the group von Neumann algebra and the standard trace by
vel

(1.2) N (D)= (P(D), P(D))";

(1.3) try (@) = <a(e), e)pry;

where #(1>(I'), I*(I'))" is the space of bounded I'-equivariant operators from /*(I') to
itself, ae A/"(I') and ee I" = [*>(I') is the unit element. The given trace on .o/ extends to a
trace on square-matrices over .o/ in the usual way

(1.4) tr: M(n,n, /) > C, A ) tr(4;,).

i=1

Taking adjoints induces the structure of a ring with involution on .o/, i.e. we obtain a
map *: .o/ — o/, ar> a* which satisfies (a + b)* = a* + b*, (ab)* = b*a* and (a*)* = a
and 1* =1 for all a, b € o/. This involution induces an involution on matrices

(1.5) x: M(m,n, of) > M(n,m, of), A=(4,;) > A% =(4}).

Bereitgestellt von | ULB Bonn
Angemeldet
Heruntergeladen am | 09.04.18 17:08



140 Liick, von Neumann algebras and L*-Betti numbers 1

Definition 1.6. Let P be a finitely generated projective .o/-module. Let A € M (n, n, o7)
be a matrix such that 4 = A* A? = A and the image of the .oZ-linear map 4 : /" — /"
induced by right multiplication with A is .Z-isomorphic to P. Define the von Neumann
dimension of

dim(P) = dim,, (P):=tr,(4) €[0,00). O

It is not hard to check that this definition is independent of the choice of 4 and
depends only on the isomorphism class of P. Moreover the dimension is faithful, i.e.
dim(P) = 0 implies P = 0, is additive under direct sums and satisfies dim (o) = n.

We recall that we have defined K, TM and PM for K = M in Definition 0.5. A se-
quence L —L— M —£% N of .«/-modules is weakly exact resp. exact at M if im(f) = ker(g)
resp. im(f) = ker(g) holds. A morphism f: M — N of .&/-modules is called a weak iso-
morphism if its kernel is trivial and the closure of its image is N.

Next we explain how these concepts above correspond to their analogues for finitely
generated Hilbert .o/-modules. Let /?(.«/) be the Hilbert space completion of .o/ which is
viewed as a pre-Hilbert space by the inner product <{a, b) = tr(ab*). A finitely generated
Hilbert o/-module V is a Hilbert space V together with a left operation of .«7 by C-linear

maps such that there exists a unitary .o/-embedding of V in @ /*(<7) for some n. A

i=1
morphism of finitely generated Hilbert .«7-modules is a bounded .«7-equivariant operator.
Denote by {fin. gen. Hilb. .«/-mod.} the category of finitely generated Hilbert .«7-modules.
A sequence U —L— ¥V —£ W of finitely generated Hilbert .«Z-modules is exact resp.
weakly exact at V if im(f) = ker(g) resp. im(f) = ker(g) holds. A morphism f: V - W
is a weak isomorphism if its kernel is trivial and its image is dense. For a survey on finite
von Neumann algebras and Hilbert .o7-modules we refer for instance to [19], section 1,
[24], section 1.

The right regular representation .«# — % (/> (.«Z), I?(«/))” from .o into the space of
bounded .«7-equivariant operators from /2 (.«7) to itself sends a € ./ to the extension of the
map .o/ — o/, b — ba* It is known to be bijective [9], Theorem 1 in 1.5.2 on page 80,
Theorem 2 in 1.6.2 on page 99. Hence we obtain a bijection

(1.7) v M(m,n, of) - B2 (ALY P (A,
which is compatible with the C-vector space structures, the involutions and composition.

The details of the following theorem and its proof can be found in [21], section 2.
It is essentially a consequence of (1.7) and the construction of the idempotent completion
of a category. It allows us to forget the Hilbert-module-structures and simply work with
the von Neumann algebra as a plain ring. An equivalent approach is given by Farber [12],
[13] and is identified with the one here in [21], Theorem 0.9. An inner product on a finitely
generated projective .o7/-module P is a map u: P X P — .o/ which is linear in the first
variable, symmetric in the sense u(x, y) = u(y, x)* and positive in the sense p(x, x) > 0 <
x =% 0 such that the induced map P — P* sending ye P to u(—, y) is bijective.
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Liick, von Neumann algebras and L*-Betti numbers 1 141

Theorem 1.8. (1) There is a functor
v:{fin. gen. proj. o/-mod. with inner prod.} — {fin. gen. Hilb. o/-mod.}
which is an equivalence of C-categories with involutions.

(2) Any finitely generated projective of-module has an inner product. Two finitely
generated projective of -modules with inner product are unitarily o/ -isomorphic if and only
if the underlying .o/ -modules are .o/ -isomorphic.

(3) Let v™! be an inverse of v which is well-defined up to unitary natural equivalence.
The composition of v~ with the forgetful functor induces an equivalence of C-categories

{fin. gen. Hilb. o/-mod.} — {fin. gen. proj. o/-mod.} .
(4) v and v=! preserve weak exactness and exactness. 0O

Of course Definition 1.6 of dim(P) for a finitely generated projective .o/-module
agrees with the usual von Neumann dimension of the associated Hilbert .o7-module v (P)
after any choice of inner product on P.

2. The generalized dimension function

In this section we give the proof of Theorem 0.6 and investigate the behaviour of
the dimension under colimits. We recall that we have introduced dim’ (M) for an arbitrary
o/-module M in Definition 0.4 and K, TM and PM for K = M in Definition 0.5. We begin
with the proof of Theorem 0.6.

Proof. (1) is proven in [21], Corollary 2.4 for finite von Neumann algebras. How-
ever, Pardo pointed out to us that any von Neumann algebra is semi-hereditary. This
follows from the facts that any von Neumann algebra is a Baer #-ring and hence in
particular a Rickart C*-algebra [4], Definition 1, Definition 2 and Proposition 9 in Chapter
1.4, and that a C*-algebra is semi-hereditary if and only if it is Rickart [1], Corollary 3.7
on page 270.

(2) and (4)(a) in the special case that M = P for a finitely generated projective
o/-module P.

Let 2 = {P;|ie I} be the directed system of finitely generated projective .o/-submo-
dules of K. Notice that £ is indeed directed by inclusion since the submodule of P generated
by two finitely generated projective submodules is again finitely generated and hence by
(1) finitely generated projective. Let j; : P, — P be the inclusion. Equip P and each P; with
a fixed inner product and let pr;: v(P) — v(P) be the orthogonal projection satisfying
im(pr, = im(v(j;)) and pr:v(P) — v(P) be the orthogonal projection satisfying

im(pr) = J im(pr;). Next we show

iel

2.1 im(v~!(pr)) = K.
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142 Liick, von Neumann algebras and L*-Betti numbers 1

Let f: P — .o/ be an o/-map with K — ker (f). Then f - j, = 0 and therefore v(f) o v(j;) = 0
for all iel. We get im(pr,) < ker(v(f)) for all iel Because the kernel of v(f) is
closed we conclude im(pr) = ker(v(f)). This shows im(v~!(pr)) = ker(f) and hence
im(v~!(pr)) = K. As K = ker(id — v~ (pr)) = im (v ! (pr)), we conclude K = im (v~ (pr)).
This finishes the proof of (2.1) and of (2) in the special case M = P.

Next we prove
(2.2) dim’(K) = dim(K).

The inclusion j; induces a weak isomorphism v(P;) — im(pr;) of finitely generated Hilbert
o/-modules. If we apply the Polar Decomposition Theorem to it we obtain a unitary
o/ -isomorphism from v(P,) to im(pr;). This implies dim (P;) = tr(pr;). Therefore it remains
to prove

(2.3) tr(pr) :=sup {tr(pr;)|ie [} .

As tr is normal, it suffices to show for x € v(P) that the net {pr;(x)|ie I} converges
to pr(x). Let ¢ > 0 be given. Choose i(¢) € I and x;,, € im (pr;,,) with [|pr(x) — x;, || = ¢/2.
We conclude for all i = i(e)

llpr(x) — pr; () [| = [[pr(x) — pry, ()|
S Ipr(x) — Py (Xie) || + 11PTie) (Xi(e) — Pliey (X) ]
= lpr(x) — X |l + 1IPLi¢ (xi(s) —pr(x)|l
= [[pr(x) — xi(s)” + {1 prigs Il - ||xi(£) —pr)||
= 2 ||pr(x) — x4l

E.

lIA

Now (2.3) and hence (2.2) follow. In particular we get from (2.2) for any finitely generated
projective submodule Q, of a finitely generated projective .o/-module Q

(2.4) dim(Q,) = dim(Q),
since by definition dim(Q,) < dim’(Q,) and dim(Q,) < dim(Q) follows from additivity of

dim under direct sums and that we have already proven that Q, is a direct summand in Q.
This implies for a finitely generated projective .o/-module QO

(2.5) dim(Q) = dim'(Q).

Now (2.2) and (2.5) imply (4)(a) in the special case that M = P for a finitely generated
projective .o/-module P.

(4)(d) has been already proven in 2.5.
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(4)(b) If P < M is a finitely generated projective submodule, then there is an index
ie I with P < M; by cofinality.

(4)(c) Let P = M, be a finitely generated projective submodule. We obtain an exact
sequence 0 —» M, — p~'(P) - P — 0. Since p~*(P) = M, @ P, we conclude

dim’(M,) + dim(P) < dim'(p~'(P)) £ dim'(M,).
Since this holds for all finitely generated projective sumodules P c M,, we get
(2.6) dim' (M) + dim'(M,) < dim'(M,).

Let Q < M, be finitely generated projective. Let i(M,) N Q be the closure of i(My) N Q
in Q. We obtain exact sequences

0 > i(M))nQ - Q0 — r(Q) - 0;
0 > iMg)nQ - 0 - Q/iMg)nQ — 0.

By the special case of (2) which we have already proven above i(M,) N Q is a direct
summand in Q. We conclude

dim(Q) = dim(i(My) n Q) + dim(Q/i(My) N Q).

From the special case (4)(a) we have already proven above, (4)(d) and the fact that there
is an epimorphism from p (Q) onto the finitely generated projective .o/-module Q/i(M,) N O,
we conclude

dim (i((My) n 0) = dim'(i(My) N 0);
dim(Q/i(My) N Q) < dim’(p(Q)).

Since obviously dim’(M) < dim’(N) holds for .o/-modules M and N with M < N, we get

dim(Q) = dim (i(M,) N Q) + dim (Q/i(M,) N 0)
< dim’ (/(Mo) 0 Q) + dim’ (p(Q))
=< dim' (M) + dim’' (M) .
Since this holds for all finitely generated projective submodules O = M, we get
(2.7) dim'(M,) = dim'(M,) + dim’ (M,).
Now (4)(c) follows from (2.6) and (2.7).
(2) and (4)(a) Choose a finitely generated free .o«/-module F together with an epi-
morphism ¢ : F — M. One easily checks that ¢ !(K) is ¢ !(K) and that F/¢g~'(K) and

MK are isomorphic. From the special case of (2) and (4) (a) which we have already proven
above we conclude that F/g~1(K) and hence M/K are finitely generated projective and
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144 Liick, von Neumann algebras and L*-Betti numbers 1
dim’(¢ ™" (K)) = dim'(¢~"(K)) = dim' (¢~ (K)).
If L is the kernel of g, we conclude from Additivity
dim’' (¢~ 1(K)) = dim’(L) + dim'(K)
dim’' (¢~ !(K)) = dim’(L) + dim’(K).
Now (2) and (4)(a) follow in general.
(3) follows from (2), as {0} = TM and M/TM = PM by definition.

(4)(e) From (2), (4)(c) and (4)(d) we get: dim’' (M) = dim'(TM) + dim (PM). If we
apply (4)(a) to {0} = M we get dim’'(TM) = 0 because of {0} = TM.

(4)(f) Let dim” be another function satisfying Continuity, Cofinality, Additivity and
the Extension Property. We want to show for an .&/-module M

dim” (M) = dim’(M).

Since (4)(e) is a consequence of Continuity, Additivity and the Extension Property alone,
this is obvious provided M is finitely generated. Since the system of finitely generated
submodules of a module is cofinal, the claim follows from Cofinality. This finishes the
proof of Theorem 0.6. O

Notation 2.8. In view of Theorem 0.6 we will not distinguish between dim’ and dim
in the sequel. O

Next we investigate the behaviour of dimension under colimits indexed by a directed
set. We mention that colimit is sometimes called in the literature also inductive limit or
direct limit. The harder case of inverse limits which is not needed in this paper will be
treated at a different place (see also [7], Appendix).

Theorem 2.9. Let I be a category such that between two objects there is at most one
morphism and for two objects i, and i, there is an object i, with i, < i, and i, < i, where
we write i < k for two objects i and k if and only if there is a morphism from i to k. Let M,
be a covariant functor from I to the category of .«/-modules. For i < j let ¢; ;: M; — M; be
the associated morphism of o/ -modules. For i€ I let v,: M; — colim; M, be the canonical
morphism of o/ -modules. Then:

(1) We get for the dimension of the o/-module given by the colimit colim; M,
dim (colim, M,) = sup {dim (im (y,))|ie I} .

(2) Suppose for each i€ I that there is i, € I with i < i, such that dim(im(¢, ; )) < oo

holds. Then:

i,io

dim (colim; M;) = sup {inf{dim (im (¢, ;: M; > M,))|jel i <j}|iel}.
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Proof. (1) Recall that colim; M, can be constructed as | | M/~ for the equivalence
iel
relation for which x € M; ~ y € M; holds precisely if there is k € I with i < k and j < k with
the property ¢, ,(x) = ¢; ,(»). With this description one easily checks

colim; M; = ( ) im(y, : M; — colim, M,).

il
Now apply Cofinality of dim (see Theorem 0.6(4)).

(2) It remains to show for ie [/

(2.10) dim (im(y,)) = inf{dim (im (¢, ;: M; > M)))|jel, i <j}.

By assumption there is i, € I with i < i, such that dim(im(¢, ;) is finite. Let K, ; be the
kernel of the map im(¢, ;) — im(¢; ;) induced by ¢, ; for i, < and K; be the kernel of
the map im (¢, ;) — im(p;) induced by v, . Then K; = | ) K, ;and hence by Cofinality
(see Theorem 0.6(4)) jeLiosj

dlm(K ) - sup{dlm( io, J)|j€]5 iO é]} .
Since dim (im (¢, ;) is finite, we get from Additivity (see Theorem 0.6(4))

(2.11) dim(im(lpi)) = dim (im (lpiolim(dn,io): im(¢; ;) — colim; Mz))
= dim (im ((i)i,io))) —dim(K;)
= dim (im (d)i,io))) —sup {dim(K;, ))|j€e L iy </}
= inf{dim (im (¢, ;,))) — dim(K;, )Ije L, iy < j}
= inf{dim (im (¢i0,j|im(¢i,io) Him(¢y ) = im( )il io <}
= inf{dim(im (¢, ,))|je L, iy <} .
Given j, € J with i < j,, there is j e I with iy < j and j, < j and hence with
dim (im (¢i,j0)) = dim (irn (¢U))
This implies
(2.12) inf{dim(im(¢; ))|j€J,i <]} = inf{dim(im(¢; ;)| j €, iy < j} -
Now (2.10) follows from (2.11) and (2.12). This finishes the proof of Theorem 2.9. O

Examples 2.13. The condition in Theorem 2.9(2) that for each ie [ there is iyl
with i<i, with dim(im (4% 10)) <o is necessary as the following example shows.

Take I =N. Define M, = @&f and ¢, ,: @ o — @ o/ to be the projection. Then
=k
dim (im(¢; ) = oo for all j < < k but cohm,M is trivial and hence has dimension zero. O
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Remark 2.14. From an axiomatic point of view we have only needed the following
basic properties of .oZ. Namely, let R be an associative ring with unit which has the following
properties:

1. There is a dimension function dim which assigns to any finitely generated projective
R-module P an element

dim(P) e [0, o0)

such that dim(P @ Q) = dim(P) + dim(Q) holds and dim(P) depends only on the iso-
morphism class of P.

2. If K = P is a submodule of the finitely generated projective .«/-module P, then K
is a direct summand in P. Moreover

dim(K) = sup {dim(P)| P = K finitely generated projective R-submodule} .

Then with Definition 0.4, Theorem 0.6 carries over to R. One has essentially to copy
the part of the proof which begins with 2.4.

An easy example where these axioms are satisfied is the case where R is a principal
ideal domain and dim is the usual rank of a finitely generated free R-module. Then the
extended dimension for an R-module M is just the dimension of the F-vector space F @z M
for F the quotient field of R. Notice that the case of a von Neumann algebra R = .o/ is
harder since .7 is not noetherian in general.

In Definition 0.5 we have defined TM and PM only for finitely generated .«7-modules
M although the definition makes sense in general. The reason is that the following definition
for arbitrary .o/-modules seems to be more appropriate

(2.15) TM:=|){N < M|dim(N) = 0};
(2.16) PM = M/TM.

One easily checks using Theorem 0.6 (4) that TM is the largest submodule of M with trivial
dimension and that these definitions (2.15) and (2.16) agree with Definition 0.5 if M is
finitely generated. One can show by example that they do not agree if one applies them
to arbitrary .o/-modules. In the case of a principal ideal domain R the torsion submodule
of an R-module M is just TM in the sense of definition (2.15). O

3. Induction for group von Neumann algebras

Next we investigate how the dimension behaves under induction. Let i: 4 — I be
an inclusion of groups. We claim that associated to i there is a ring homomorphism of the
group von Neumann algebras, also denoted by

(3.1) i N(A) > ().
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Recall that .4°(4) is the same as the ring % (/*(4), [>(4))* of bounded A-equivariant
operators f: [*(A) — [*(A). Notice that CI' ® ., /*(4) can be viewed as a dense subspace
of [2(I') and that f defines a CI'-homomorphism id ®, f: CI' @, [*(4) - CI' ®, [*(4)
which is bounded with respect to the pre-Hilbert structure induced on CI' ® ., > (4) from
[*(I'). Hence id ®., f extends to a I'-equivariant bounded operator i(f): [*(I') — I*(I").

Given an A" (4)-module M, define the induction with i to be the A"(I")-module
(3.2) Iy (M) =N (I) M.

Obviously i, is a covariant functor from the category of .4#°(4)-modules to the category
of A"(I')-modules, preserves direct sums and the properties finitely generated and projective
and sends A"(4) to A (I').

Theorem 3.3. Leti: A — I be an injective group homomorphisms. Then:

(1) Induction with i is a faithfully flat functor from the category of N (A)-modules to
the category of N (I')-modules, i.e. a sequence of N (A)-modules My, - M, — M, is exact
at M, if and only if the induced sequence of N (I')-modules i, My — i, My — i, M, is exact
at i, M.

(2) For any N (A)-module M we have:
dim.,, (M) = dimy (i, M) .
Proof. The proof consists of the following steps.

Step 1. dim ., (M) = dim, (i>k (M)), provided M is a finitely generated projective
N (4)-module.

Let A€ M(n, n, /°(4)) be a matrix such that 4 = 4% 4% = 4 and the image of the
N (A)-linear map A4 : V' (A)" - A'(4)" induced by right multiplication with 4 is A"(4)-
isomorphic to M. Let i(4) be the matrix in M (n, n, A" (I')) obtained from 4 by applying
i to each entry. Then i(4) = i(A)* = i(4)* = i(A) and the image of the ./"(I')-linear map
i(A): /()" - A(I')" induced by right multiplication with i(A) is A" (I")-isomorphic to
i,, M. Hence we get from Definition 1.6

dimm(A)(M) = try4)(A4);
dim,/wr) (1, M) = ty (i (A)) .

Therefore it suffices to show tr., (i(a) = try4 (a) for ae A"(4). This is an easy conse-
quence of the Definition 1.3 of the standard trace.

Step 2. If M is finitely presented 4" (4)-module, then

dim., (M) = dimmr)(i* (M)) ;

Tor" (N ('), M) = 0.
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Since M is finitely presented, it splitsas M = TM @ PM where PM is finitely generated
projective and there is an exact sequence 0 — A4"(4)" N (A" > TM - 0 with f* = f
[21], Theorem 1.2, Lemma 3.4. If we apply the right exact functor induction with i to it,
we get an exact sequence A (I")" Ay Iy - i, TM — 0 with (i, /)* = i, f. Because
of Step 1, Additivity (see Theorem 0.6(4)) and the definition of Tor it suffices to show
that i, f is injective. Let v be the functor introduced in Theorem 1.8 or [21], section 2.
Then i (v (f))is v (i, f). Because v respects Weak exactness (see Theorem 1.8 or [21], Lemma
2.3) v(f) has dense image since A" (4)" S (4)" — 0 is weakly exact. Then one easily
checks that v(i, f) = i, (v(f)) has dense image since CI' ®, [*(4) is a dense subspace of
[>(I"). Since the kernel of a bounded operator of Hilbert spaces is the orthogonal com-
plement of the image of its adjoint and v (i, f) is selfadjoint, v(i, f) is injective. Since v~*
respects exactness (see Theorem 1.8 or [21], Lemma 2.3) 7, f'is injective.

Step 3. Tor{ @ (A (I'), M) = 0 provided, M is a finitely generated ./"(4)-module.

Choose an exact sequence 0 - K—5— P — M — 0 such that P is a finitely generated
projective A" (A)-module. The associated long exact sequence of Tor-groups shows that
Tor! (A" (I'), M) is trivial if and only if i, g: i, K — i, P is injective. For each element
x in i K there is a finitely generated submodule K c K such that x lies in the image of
the map i, K’ — i, K induced by the inclusion. Hence it suffices to show for any
finitely generated submodule K’ < P that the inclusion induces an injection 7, K" — i, P.
This follows since Step?2 applied to the finitely presented module P/K shows
Tor! (A" (I'), P/K) = 0.

Step 4. i, is an exact functor.

By standard homological algebra we have to show that Tory,, (A" (I'), M) = 0 is
trivial for all A4"(4)-modules M. Notice that M is the colimit of the directed system of its
finitely generated submodules (directed by inclusion) and that the functor Tor commutes
in both variables with colimits over directed systems [6], Proposition VI.1.3 on page 107.
Now the claim follows from Step 3.

Step 5. Let {M;|ieI} be the directed system of finitely generated submodules of
the A"(4)-module M. Then

dim,,,, (M) = sup {dim ., (M,)|ieI};
dim, (i, M) = sup {dim, (i, M;)|ie I} .

Because of Step 4 we can view i, M; as a submodule of i, M. Now apply Cofinality (see
Theorem 0.6(4).

Step 6. The second assertion of Theorem 3.3 is true.

Because of Step 5 it suffices to prove the claim in the case that M is finitely generated
because any module is the colimit of the directed system of its finitely generated submodules.
Choose an exact sequence 0 - K —5— P — M — 0 such that P is a finitely generated
projective A" (A4)-module. Because of Step 4 and Additivity (see Theorem 0.6) we get
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dimy 4 (M) = dim, 4 (P) — dim, 4 (K) ;
dimy ) (i, M) = dim (i, P) — dimy 1, (i, K) .
Because of Step 1 it remains to prove
dim ) (K) = dim,,;, (i, K) .

Because of Step 5 it suffices to treat the case where K < P is finitely generated. Since A" (4)
is semi-hereditary (see Theorem 0.6(1)) K is finitely generated projective and the claim
follows from Step 1.

Step 7. The first assertion of Theorem 3.3 is true.

Because we know already from Step 4 that 7, is exact, it remains to prove for an
N (A)-module M

iZM=0 < M=0.

Suppose i, M = 0. In order to show M =0 we have to prove for any .4"(4)-map
[ N(4) — M that it is trivial. Let K be the kernel of /. Because i, is exact by Step 4 and
i,, M = 0 by assumption, the inclusion induces an isomorphism i, K — i, .A"(4). Since i, K
is a finitely generated ./"(I")-module and i, is exact by Step 4, there is a finitely generated
submodule K’ = K such that the inclusion induces an isomorphism i, K’ — i, .4"(4). Let
N (A)" — K' be an epimorphism. Let g: A" (4)" — A" (A) be the obvious composition.
Because i, is exact by Step 4 the induced map i, g:i N (4)" — i, AN (4) is surjective.
Hence it remains to prove that g itself is surjective because then K'= ./"(4) and the map
f: N (A) - M is trivial. Since the functors v~ and v of Theorem 1.8 are exact we have
to show for a A-equivariant bounded operator & : [*(4)™ — [*(4) that h is surjective if
i(hy: P(I')™ — [*(I') is surjective. Let {E,|4 = 0} be the spectral family of the positive
operator h o i*. Then {i (E,)| . = 0} is the spectral family of the positive operator i (h) o i (h)*.
Notice that & resp. i(h) is surjective if and only if E, = 0 resp. i(E,) = 0 for some 4 > 0.
Because E,=0 resp. i(E;) =0 is equivalent to dimy,(im(v '(E,))) =0 resp.
dimy, (im(v "' (i (E,)))) = 0 and im (v "' (i (E,))) = i, im (v~ ' (E,)), the claim follows from
Step 6. This finishes the proof of Theorem 3.3. O

The proof of Theorem 3.3 would be obvious if we would know that A4"(I") viewed
as an ./ (4)-module is projective. Notice that this is a stronger statement than proven in
Theorem 3.3. One would have to show that the higher Ext-groups instead of the Tor-groups
vanish to get this stronger statement. However, the proof for the Tor-groups does not go
through directly since the Ext-groups are not compatible with colimits.

Lemma 3.4. Let H < I be a subgroup. Then:

(1) dim(AN(I') @, C[T'/H]) = |H |, where| H| ™' is defined to be zero if H is infinite.

(2) /' (I') ®cr CLIVH] is trivial if and only if H is non-amenable.

(3) If I is infinite and V is a CI'-module which is finite-dimensional over C, then

dim (A (') @, V) = 0.
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Proof. (3) Since V is finitely generated as CI'-module 4 (I') ®, V is a finitely
generated A (I")-module. Because of Theorem 0.6 it suffices to show that there is no
N (I')-homomorphism from A"(I') @, V to A"(I'). This is equivalent to the claim that
there is no CI'-homomorphism from V to A" (I'). Since the map A" (I') — [>(I') given by
evaluation at the unit element ee I’ = [*(I') is I'-equivariant and injective it suffices to
show that /?(I') contains no I'-invariant linear subspace W which is finite-dimensional as
complex vector space. Since any finite-dimensional topological vector space is complete,
W is a Hilbert 4" (I')-submodule. Let pr: />(I') — [*(I") be an orthogonal I'-equivariant
projection onto W. Then we get for any ye I’

3.5) dim (W) = {pr(y), 7>
Let {v,, v,, ..., v,} be an orthonormal basis for the Hilbert subspace W < I*(I'). For ye I’

we write pr(y) = Y. 4,(y) - v;. We get from ||pr(y)||* <1

i=1
(3.6) =1,
Given ¢ > 0, we can choose y(¢) satisfying
(3.7) o,y <rt-e fori=1,2,...,r.
Now (3.6) and (3.7) imply
(3.8) prr®), 7)) <.

Since (3.8) holds for all £ > 0, we conclude dim (/) = 0 and hence W = 0 from equation
(3.5).

(1)and 2) If i:H — T is the inclusion, then i (AN (H)®.;C) and
N(I') ®cr CLI'/H] are isomorphic as .A"(I")-modules. Because of Theorem 3.3 it remains
to treat the special case I' = H for the first two assertions. The first assertion follows from
the third for infinite I" and is obvious for finite I'. Next we prove the second assertion.

C)@—l
Let S be a set of generators of I'. Then (P CI' == CIr—%— C — 0 is exact
seS
where £( ). 4,-y) = Y 4, and r, denotes right multiplication with u € CI". We obtain an

yel yel
Fs—1

exact sequence (PN (I") == N () —-— V(') ®¢,C — 0 since the tensor product

sesS

@rrl
is right exact. Hence A"(I') ®, C is trivial if and only if AN (I') ==—— A'(I) is

seS
surjective. This is equivalent to the existence of a finite subset 7'< S such that
5;2%—1
DA (T) A(I)
seT

is surjective. Let 4 < be the subgroup generated by T .@Then the map above
is induction with the inclusion of 4 < I" applied to A" (4) T A (4). Hence we

teT

Bereitgestellt von | ULB Bonn
Angemeldet
Heruntergeladen am | 09.04.18 17:08



Liick, von Neumann algebras and L*-Betti numbers 1 151

conclude from Theorem 3.3(1) that A/ (I') ®¢, C is trivial if A(4) ®,C is trivial for
some finitely generated subgroup 4 < I'. Since I' is amenable if and only if each of its
finitely generated subgroups is amenable [28], Proposition 0.16 on page 14, we can assume
without loss of generality that I is finitely generated, i.e. S is finite. We can also assume
that S is symmetric, i.e. s € S implies s '€ S.

Because the functor v of Theorem 1.8 is exact, 4/ (I') ®, C is trivial if and only if

@rs—1
the operator f: @ [*(I') ==*—— [*(I') is surjective. This is equivalent to the bijectivity of
seS

the operator 1

1 2 id—ESHrS 2
mf@f*l(F)—)l (F)

1

Yo h
It is bijective if and only if the spectral radius of the operator /*(I") SIS, g () is

different from 1. Since this operator is convolution with a probability distribution whose
support contains S, namely

|IS|7Y, yes,
P:T - [0,1
- [0,1], VH{()’ 2 és.

the spectral radiusis 1 precisely if I' is amenable [ 16]. This finishes the proof of Lemma 3.4. O

4. L*-invariants for arbitrary I-spaces

In this section we extend the notion of L?-Betti numbers for regular coverings of
CW-complexes of finite type (i.e. with finite skeletons) with I" as group of deck transfor-
mations to (compactly generated) topological spaces with action of a (discrete) group I
We will continue with using Notation 1.1.

Definition 4.1.  Let X be a (left) Ispace and ¥ be a .«/-ZI-bimodule. Let H](X; V)
be the singular homology of X with coefficients in V, i.e. the .o/-module given by the homology
of the .o/-chain complex V ®,, C;"(X), where C3"#(X) denotes the singular ZI'-chain
complex of X. Define the p-th L*-Betti number of X with coefficients in V by

b (X: V)= dim,, (H; (X: 7)) €[0,00],
and the p-th L*-Betti number of the group I by
B () :=bP(EI; A (I'). O

Next we compare cellular and singular chain complexes and show that it does not
matter whether we use singular or cellular chain complexes in the case that X is a I-CW-
complex. For basic definitions and facts about I'-CW-complexes we refer for instance to
[8], sections II.1 and I1.2, [20], sections 1 and 2.
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Lemma 4.2. Let X be a I'-CW-complex. Then there is a up to ZI'-homotopy unique
and in X natural ZI'-chain homotopy equivalence

f(X): CE(X) - (X)),
In particular we get for any of/-ZI'-bimodule V an in X and V natural isomorphism
Hp(V®ZF C;en(X)) s Hp(V®zr Cimg(X)) .

Proof. Obviously the second assertion follows from the first assertion which is
proven as follows.

Let Y be a CW-complex with cellular Z-chain complex C$*"' and singular Z-chain
complex C3". We define a third (intermediate) Z-chain complex C}"¢(Y) as the sub-
complex of C3"® whose n-th chain module is the kernel of

Gime(Y,) < GRF(Y) —— GRF(Y,. Y.
There are an in Y natural inclusion and an in Y natural epimorphism of Z-chain complexes
4.3) i(Y): CM(Y) —» CJ"(Y);
(4.4) p(Y): Ce(Y) - Ce(Y);
which induce isomorphisms on homology [20], page 263.

If I' acts freely on the I'-CW-complex X, then Cg*"' and CJ™® are free ZI'-chain
complexes and we get a ZI'-chain homotopy equivalence well-defined up to ZI'-homotopy
from the fundamental theorem of homological algebra and the fact that the chain maps
(4.3) and (4.4) induce isomorphisms on homology. In the general case one has to go to
the orbit category Or(I") and apply module theory over this category instead of over ZI.

The orbit category Or(I') has as objects homogenous spaces and as morphisms
I'-maps. The I'-CW-complex X defines a contravariant functor

X:0r(I') > {CW— COMPLEXES}, I'/H > map(I'/H,X)" = X",

Its composition with the functor C£*!, Ci™® resp. C3™® from the category of CW-complexes
to the category of chain complexes yields ZOr(I')-chain complexes, i.e. contravariant
functors

CeM(X):Or(I') - {Z — CHAIN-COMPLEXES} ;
Cime(X):Or(I') » {Z — CHAIN-COMPLEXES} ;
Cs"¢(X): Or(I') —» {Z — CHAIN-COMPLEXES} .

We obtain natural transformations from the natural chain maps (4.3) and (4.4)

4.5) i(X): CP(X) - CE"(X);
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(4.6) pX): CPe(X) - CN(X);

which induce isomorphisms on homology. Hence it suffices to show that C{"(X) and
Csr¢(X) are free and hence projective in the sense of [20], Definition 9.17 because then
we obtain a homotopy equivalence of ZOr(I")-chain complexes from C$"(X) to C5"¢(X)
[20], Lemma 11.3 whose evaluation at I'/1 is the desired ZI'-chain homotopy equivalence.
The proofs that these two chain complexes are free are simple versions of the arguments
in [20], Lemma 13.2. Notice that in [20] the I'-CW-complex is required to be proper, but
this condition is needed there only because there I' is assumed to be a Lie group and
universal coverings are built in, and can be dropped in the discrete case. O

Remark 4.7. Originally the L*-Betti numbers of a regular covering M — M of a
closed Riemannian manifold with group of deck transformations I" were defined by Atiyah
[2] in terms of the heat kernel as explained in (0.2) in the introduction. It follows from
the L?-Hodge-deRham theorem [10] that this analytic definition agrees with the combi-
natorial definition of 5{* (X) in terms of the associated cellular L*-chain complex and the
von Neumann dimension of finitely generated Hilbert A"(I")-modules for a triangulation
X of M. Because of Lemma 4.2 this combinatorial definition agrees with the Definition 4.1.

Analogously to the case of L?-Betti numbers we will extend the notion of Novikov-
Shubin invariants for regular coverings of compact Riemannian manifolds to arbitrary
I'-spaces and prove that they are positive for the universal covering of an aspherical closed
manifold with elementary-amenable fundamental group in another paper. 0O

The next results are well-known in the case where X is a regular covering of a
CW-complex of finite type. We call a map g:Y — Z homologically n-connected for
n=1 if the map induced on singular homology with complex -coefficients
g, Hi"(Y;C) - H"#(Y; C) is bijective for k < n and surjective for k = n. The map g
is called a weak homology equivalence if it is n-connected for all n = 1.

Lemma 4.8. Let f: X —» Y be a I'-map and let V be a of -7 I'-bimodule.

(1) Suppose for n =1 that for each subgroup H < I' the induced map f*: X% — YH
is homologically n-connected. Then the map induced by f

fot HI (X, V) > HI(Y; V)
is bijective for p < n and surjective for p = n and we get
b,‘f)(X; V) = bl(,z)(Y; V) forp<n;
PP(X;V)Z BP(Y; V) forp=n.

(2) Suppose such that for each subgroup H = I the induced map f*: X" — Y is a
weak homology equivalence. Then for all p = 0 the map induced by f

fo HI(X;V) - HI (Y V)

is bijective and we get
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2)(y- 2V
POX,V) = bP(Y;V). O

Proof. We give only the proof of the second assertion, the one of the first assertion
is an elementary modification. The map f'induces a homotopy equivalence of Z Or(I")-chain
complexes C3™(f): Ci"(X) — C3"¢(Y) in the notation of the proof of Lemma 4.2
since the singular ZOr(I")-chain complexes of X and Y are free in the sense of [20],
Definition 9.17 (see [20], Lemma 11.3). Its evaluation at I'/1 is a ZI'-chain equivalence.
Hence f induces a chain equivalence

V@ CJM () 1V @ur CI™(X) = V@, CJM(Y)
and Lemma 4.8 follows. 0O
We get as a direct consequence from Theorem 3.3
Theorem 4.9. Let i: A — I' be an inclusion of groups and let X be a A-space. Then

H (I, X; /(D)) = iy Hy (X; N (4));
BRI %, X; /(1) = bP(X; 4 (4)). O

Theorem 4.10. Let X be a path-connected I'-space. Then:
(1) There is an isomorphism of N (I')-modules HY (X; /(') = N (') ®,,C.

(2) BO(X; () = ||, where |I'| ! is defined to be zero if the order |I'| of T is
infinite.

(3) HLY(X; N (I')) is trivial if and only if T is non-amenable.

Proof. The first assertion follows from the fact that C{"¢(X) - C§"¢(X) - Z — 0
is an exact sequence of ZI'-modules and the tensor product is right exact. The other two
assertions follow from Lemma 3.4. O

Remark 4.11.  Let M — M be the universal covering of a closed Riemannian manifold
with fundamental group n. Brooks [5] has shown that the analytic Laplace operator 4,
on M in dimension zero has zero not in its spectrum if and only if 7 is non-amenable.
Now 4, has zero not in its spectrum if and only if HZ(M, ./"(n)) is trivial because of [21],
paragraph after Definition 3.11, Theorem 6.1, and the fact that the analytic and combi-
natorial spectral density function are dilatationally equivalent [11]. Hence Theorem 4.10
generalizes the result of Brooks. Notice that both Brook’s and our proof use [16]. Compare
also with the result [15], Corollary I11.2.4 on page 188, that a group I" is non-amenable
if and only if H'(I', />(I')) is Hausdorff. O

Remark 4.12. Next we compare our approach with the one in [7], section 2. We
begin with the case of a countable simplicial complex X with free simplicial I'-action. Then
for any exhaustion X, < X, < X, < --- < X by I'-equivariant simplicial subcomplexes for
which X/I' is compact, the p-th L?-Betti number in the sense and notation of [7], 2.8 on
page 198 is given by
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PP (X:T)=lim lim dim g (im (H%,(X,: T)) IR Ay (X,:T)),

j—2 o k>
where i; , : X; — X is the inclusion for j < k. We get from [21], Lemma 1.3, and Lemma 4.2
dim ., (im (A2, (X, : 1)) —2 HE(X;: 1))
= dim (im(H;(Xj; A (I)) R Hpr(Xk; N (I))).

Hence we conclude from Theorem 2.9 that the definitions in [7], 2.8 on page 198, and in
4.1 agree:

(4.13) PP(X:T)=bP(X; N/ ().

If I' is countable and X is a countable simplicial complex with simplicial I'-action, then
by [7], Proposition 2.2 on page 198, and by (4.13)

(4.14) PP(X:T)=bP(ErxX:T);
(4.15) BP(X:T)=bP(Erx X; N(I)).

Cheeger and Gromov [7], Section 2, define L?-cohomology and L?-Betti numbers
of a I'-space X by considering the category whose objects are I'-maps f: Y — X for a
simplicial complex Y with cocompact free simplicial I"-action and then using inverse limits
to extend the classic notions for finite free I'-C W-complexes such as Y to X. Our approach
avoids the technical difficulties concerning inverse limits and is closer to standard notions,
the only non-standard part is the verification of the properties of the extended dimension
function (Theorem 0.6 and Theorem 3.3).

5. Amenable groups

In this section we investigate amenable groups. For information about amenable
groups we refer for instance to [28]. The main technical result of this section is the next
lemma whose proof uses ideas of the proof of [7], Lemma 3.1 on page 203.

Theorem 5.1. Let I' be amenable and M be a CI-module. Then

dim . (Tort " (N ('), M)) =0 forp=1,

where we consider N (') as an N (I")-CI-bimodule.

Proof. Step 1. If M is a finitely presented CI-module, then

dim ;. (TorS" (N (I'), M)) = 0.

Choose a finite presentation
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@Cfﬁf)@CFL)M%O.

i=1 i=1

For an element u =)’ A,y in [*(I') define its support
v

supp(u):={yel'|i,+0} cTI.

Let Be M (m, n, CI') be the matrix describing f, i.e. the component f; ;: CI' - CI" is given
by right multiplication with b, ;. Define the finite subset S by

S:={yly ory~' el supp(b; )} .

iJj

Let /@ :@PI) - @PI) be the bounded I-equivariant operator induced by f.
i=1

i=1

Denote by K the I-invariant linear subspace of (P /> (I') which is the image of the kernel of

i=1

funder the canonical inclusion & : C—D Cr — C—B [?(I'). Next we show for the closure K of K

i=1 i=1

(5.2) K = ker(f?).

Let pr: P FP(T) - Q—) [*(I') be the orthogonal projection onto the closed I-invariant
i=1 =1

subspace K+ ker(f ‘2)) The von Neumann dimension of im (pr) is zero if and only if pr

itself is zero. Hence (5.2) will follow if we can prove

(5.3) try g (pr) = 0.

Let ¢ > 0 be given. Since I' is amenable, there is a finite non-empty subset A — I satisfying
[3], Theorem F.6.8 on page 308,

(5.4)

where Jg A is defined by {a € A| there is s € S with as ¢ A}. Define

A={yel|yedsA or yse dsA for some se S} = dsA U (| (054)s).

seS

Let pr,:/*(I') — [*(I') be the projection sending Z A,y to Z 2, 7. Define
pr,: [*(I') - [*(I') analogously. Next we show for s€ S and ue 1*(I)
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(5.5) pryory(u) = ryopry(u), if pry(u) =0,

where r,: [*(I') — [*(I') is right multiplication with s. Since s € S implies s '€ S, we get
the following equality of subsets of I:

(yel|ysed,y¢A} ={yel|yed,y¢4}.

Now (5.5) follows from the following calculation for u = )] Ay VE 1*(I):

vel,y¢A
pryon =Y 7S
yseAd,y¢A
= Y Ays
yed,y¢a
=( X 4)s
veA,y¢d
= 1,0 pry ().

We have defined S such that each entry in the matrix B describing f is a linear combination
of elements in S. Hence (5.5) implies

(é—) pr) o fPu) =fPo (él—) pr)(w), ifpr,(u)=0fori=1,2,...,m.

Notice that the image of @ pr; lies in P CI. We conclude

i=1 i=1

@Pprw ek, ifueker(f?), pry(u)=0fori=1,2,...,m.
i=1

This shows

(pr > @ pry) (ker (/%) 0 D ker(pr) = 0.

Since ker(pr,) has complex codimension |4|in /*(I') and |4] < (|S|+1) - | 634, we con-
clude for the complex dimension dim. of complex vector spaces

(56 dim(ore @proker(F2) < m- (1514 1)+ 15,4,

Since pro pr, is an endomorphism of Hilbert spaces with finite-dimensional image, it is
trace-class and its trace tre (pre pr,) is defined. We get

m

tro(pre @ pry)

(5.7) try gy (pr) £ —— = —
o ]
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from the following computation for e e I' = [*(I') the unit element

o (pr) =

Z <pri, i (e)a €>

1 m
=T |A| <pr11(e) €>
|A| 1;1
7 Z <prii (1), 72
| i=1 yed
1 m
|7 Z <pri,; o pry(v), v
i=1 yed
1 m
7 Z < lloprA(’)})’ V>
| i=1 yel
Yt (prigepr)
= 2 tre(pri ;e pr
Eir=n !
1 m
=14 tre (pro (Y pry)-
i=1

If H is a Hilbert space and f: H — H is a bounded operator with finite-dimensional image,
then tr.(f) £ || f]l - dim. (£ (im(f))). Since the image of pr is contained in ker(f®) and

pr and pr, have operator norm 1, we conclude

(58) tre(pro @) pry) < dime ((pre @ pr,) (ker (/)

Equations (5.4), (5.6), (5.7) and (5.8) imply
try gy (pr) =m-(IS|+1)-¢.

Since this holds for all ¢ > 0, we get (5.3) and hence (5.2) is true.
Let prg: P A (T) —

i=1 i=1

the inclusion. It induces a map

id ®ﬂ

JiN () crker(f) —— JV(F)®CF@CF—’@JV(F)

i=1 i=1

Next we want to show

(5.9) im (v~ (prg)) = im(5) .

Let x e ker(f). Then

(5.10) (id — v (prg)) o/ (1 ® x) = (id — prg) e ko i (x) ,

@ I*(I') be the projection onto K. Let i: ker(f) —

@CF be

i=1
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where k: P CI - @ A(I') is the inclusion. Since (id — prg) is trivial on K we get

i=1 i=1
(id — prg) o ko i = 0. Now we conclude from (5.10) that im(j) = ker(id — v~ *(prr)) and
hence im (/) < im (v~ (prg)) holds. This shows im () = im (v~ (prg)). It remains to prove

for any A"(I')-map g : PN (I') > @PA(I') with im(j) < ker(g) that g o v™'(prg) is trivial.

i=1 i=1
Obviously K < ker(v(g)). Since ker(v(g)) is a closed subspace, we get K < ker(v(g)). We
conclude v(g) o prg = 0 and hence g o v~ (prg) = 0. This finishes the proof of (5.9).

Since v™! preserves exactness by Theorem 1.8 and id ® ., /= v~ (f*), we conclude
from (5.2) and (5.9) that the sequence

NI ®crker(f) 2200 (M) @ D CT 220 4/(D) @ P CT
i=1 i=1

is weakly exact. Continuity of the dimension function (see Theorem 0.6(4)) implies
dim, -, (ker (id ®, f)/im(id ®, 1)) = 0.
Since Torl" (A (I"), M) = ker(id ®, f)/im(id ®,, i) holds, Step 1 follows.
Step 2. If M is a CI-module, then dim ., (Tor{" (A"(I'), M)) = 0.

Obviously M is the union of its finitely generated submodules. Any finitely generated
module M is a colimit over a directed system of finitely presented modules, namely, choose
an epimorphism from a finitely generated free module F to M with kernel K. Since K is
the union of its finitely generated submodules, M is the colimit of the directed system F/L
where L runs over the finitely generated submodules of K. The functor Tor commutes in
both variables with colimits over directed system [6], Proposition VI.1.3 on page 107. Now
the claim follows from Step 1 and Theorem 2.9.

Step 3. 1f M is a CI-module, then dim, ., (TorS" (A" (I'), M)) = 0 for all p = 1.

We use induction over p = 1. The induction begin is already done in Step 2. Choose
an exact sequence 0 > N - F > M — 0 of A (I")-modules such that F'is free. Then we
obtain an isomorphism Tors"(A"(I'), M) = Tor,",(A"(I'), N) and the induction step
follows. This finishes the proof of Theorem 5.1. O

Theorem 5.11. Let I' be an amenable group and X a I'-space. Then
bR (X; A(I)) = dimy (N (I) @ H"™(X; C))

where H;“‘g (X; C) is the CI-module given by the singular homology of X with complex
coefficients. In particular b$? (X; A (I')) depends only on the CI-module H;™ (X; C).

Proof.  We have to show for a CI-chain complex C, with C, =0 for p <0
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(5.12) dim(Hp(JV(F) Qcr C*)) =dim(N (') ®¢ Hp(C*)).

We begin with the case where C,, is projective. Then there is a universal coefficient spectral
sequence converging to Hp+q(,/1/(1“) Qcr C*) [30], Theorem 5.6.4 on page 143, whose

E?-term is E; = Tors" (A" (I'), H,(C,)). Now Additivity of dim., (see Theorem 0.6(4))
together with Theorem 5.1 imply (5.12) if C, is projective.

Next we prove (5.12) in the case where C, is acyclic. One reduces the claim to
two-dimensional C, and then checks this special case using long exact Tor-sequences,
Additivity (see Theorem 0.6(4)) and Theorem 5.1.

In the general case one chooses a projective CI-chain complex P, together with a
CI-chainmap f, : P, — C, whichinduces anisomorphism on homology. Since the mapping
cylinder is CI-chain homotopy equivalent to C,, the mapping cone of f, is acyclic and
hence (5.12) is true for P, and the mapping cone, we get (5.12) for C, from Additivity
(see Theorem 0.6(4)). This finishes the proof of Theorem 5.11. O

We obtain as an immediate corollary from Theorem 4.10 and Theorem 5.11 (cf. [7],
Theorem 0.2 on page 191)

Corollary 5.13. If I' is infinite amenable, then for all p = 0
PP(Ir)y=0. o

Remark 5.14. It is likely that Theorem 5.1 characterizes amenable groups. Namely,
if I contains a free group F of rank two, then I is non-amenable and Theorem 5.1 becomes
false because Theorem 3.3 implies

dimy., (Tory" (A"(I'), C[I'/F])) = dimyp, (Tor{"(A"(I'), C))
= dimy (N (') ® ) Tor{" (N (F), C))
= dimy i, (Tor{* (N (F), ©))
= bP(F)
= —1(BF)

=1. O

Remark 5.15. In view of Theorem 5.1 the question arises when 4"(I") is flat over CI".
Except for virtually cyclic groups, i.e. groups which are finite or contain an infinite cyclic
subgroup of finite index, we know no examples of finitely presented groups I' such that
A(IN) is flat over CI'. If A7(I") is flat over CI, then A"(4) is flat over CA for any subgroup
A < I by Theorem 3.3(1). Moreover, A°(I') is flat over CI" if and only if A4"(4) is flat
over C4 for any finitely generated subgroup 4 = I'. This follows from Theorem 3.3(1)
and the facts that the functor Tor commutes in both variables with colimit over directed
systems [6], Proposition VI.1.3 on page 107, any CI-module is the colimit of its finitely
generated submodules, any finitely generated CI-module is the colimit of a directed system
of finitely presented CI-modules and any finitely presented CI-submodule is obtained by
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induction from a finitely presented CA4-module for a finitely generated subgroup 4 < I. It
is not hard to check that A"(I") is flat over CI, if A"(4) is flat over CA4 for some subgroup
A < T of finite index and that .4 (Z) is flat over CZ using the fact that CG is semi-simple
for finite G and CZ is a principal ideal domain. In particular A"(I") is flat over CI" if I’
is virtually cyclic.

Now suppose that A°(I') is flat over CI. If BI' is a CW-complex of finite type,
then b»(El; A°(I')) =0 for p=1 and the p-th Novikov-Shubin invariant satisfies
a,(BI') =co" for p > 2. This implies for instance that I' does not contain a subgroup
which is isomorphic to Z « Z (Remark 5.14) or Z x Z [17], Proposition 39 on page 494.
If I' is non-amenable and BI is a finite CW-complex, then BI is a counterexample to the
zero-in-the-spectrum-conjecture [18], [22], section 11. O
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