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THE TOPOLOGICAL K-THEORY OF CERTAIN

CRYSTALLOGRAPHIC GROUPS

JAMES F. DAVIS AND WOLFGANG LÜCK

Abstract. Let Γ be a semidirect product of the form Zn ⋊ρ Z/p where p is
prime and the Z/p-action ρ on Zn is free away from the origin. We will compute
the topological K-theory of the real and complex group C∗-algebra of Γ and
show that Γ satisfies the unstable Gromov-Lawson-Rosenberg Conjecture. On
the way we will analyze the (co-)homology and the topological K-theory of
the classifying spaces BΓ and BΓ. The latter is the quotient of the induced
Z/p-action on the torus Tn.

0. Introduction

Let p be a prime. Let ρ : Z/p→ Aut(Zn) = GL(n,Z) be a group homomorphism.
Throughout this paper we will assume:

Condition 0.1 (Free conjugation action). The induced action of Z/p on Zn is free
when restricted to Zn − 0.

Denote by

Γ = Zn ⋊ρ Z/p(0.2)

the associated semidirect product. Since Γ has a finitely generated, free abelian
subgroup which is normal, maximal abelian, and has finite index, Γ is isomorphic
to a crystallographic group. An example of such group Γ is given by Zp−1 ⋊ρ Z/p
where the action ρ is given by the regular representation Z[Z/p] modulo the ideal
generated by the norm element. When n = 1 and p = 2, Γ is the infinite dihedral
group.

Let BΓ := Γ\EΓ be the classifying space of Γ. Denote by EΓ be the classifying
space for proper group actions of Γ. Let BΓ = Γ\EΓ. The space BΓ is the quotient
of the torus T n under the Z/p-action associated to ρ. It is not a manifold, but an
orbifold quotient.

To compute the K-theory of the C∗-algebra, we will use the Baum-Connes Con-
jecture which predicts for a group G that the complex and real assembly maps

KG
n (EG)

∼=
−→ Kn(C

∗
r (G));

KOG
n (EG)

∼=
−→ KOn(C

∗
r (G;R)),

are bijective for n ∈ Z. It has been proved for a large class of groups which includes
crystallographic groups (and many more) in [18]. We will later use the composite
maps, where in each case the second map is induction with the projection Γ→ {1}.

Km(C∗
r (Γ))

∼=
←− KΓ

n (EΓ)→ Km(BΓ);

KOm(C∗
r (Γ;R))

∼=
←− KOΓ

m(EG)→ KOm(BΓ).
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Next we describe the main results of this paper. We will show in Lemma 1.9 (i)
that k = n/(p − 1) is an integer. Let P be the set of conjugacy classes {(P )} of
finite non-trivial subgroups of Γ.

Theorem 0.3 (Topological K-theory of the complex group C∗-algebra). Let Γ =
Zn ⋊ρ Z/p be a group satisfying Condition 0.1.

(i) If p = 2

Km(C∗
r (Γ))

∼=

{
Z3·2n−1

m even;

0 m odd.

If p is odd

Km(C∗
r (Γ))

∼=

{
Zdev m even;

Zdodd m odd;

where

dev =
2(p−1)k + p− 1

2p
+

(p− 1) · pk−1

2
+ (p− 1) · pk;

dodd =
2(p−1)k + p− 1

2p
−

(p− 1) · pk−1

2
.

In particular Km(C∗
r (Γ)) is always a finitely generated free abelian group.

(ii) There is an exact sequence

0→
⊕

(P )∈P

R̃C(P )→ K0(C
∗
r (Γ))→ K0(BΓ)→ 0,

where R̃C(P ) is the kernel of the map RC(P )→ Z sending the class [V ] of
a complex P -representation V to dimC(C⊗CP V ).

(iii) The map

K1(C
∗
r (Γ))

∼=
−→ K1(BΓ)

is an isomorphism. Restricting to the subgroup Zn of Γ induces an iso-
morphism

K1(C
∗
r (Γ))

∼=
−→ K1(C

∗
r (Z

n
ρ ))

Z/p.

Remark 0.4 (Twisted group algebras). The computation of Theorem 0.3 has
already been carried out in the case p = 2 and in the case n = 2 and p = 3 in [16,
Theorem 0.4, Example 3.7]. In view of [16, Theorem 0.3] the computation presented
in this paper yields also computations for the topological K-theory K∗(C

∗
r (Γ, ω)) of

twisted group algebras for appropriate cocycles ω. One may investigate whether the
whole program of [16] can be carried over to the more general situation considered
in this paper.

Remark 0.5 (Computations by Cuntz and Li). Cuntz and Li [12] compute the
K-theory of C∗-algebras that are associated with rings of integers in number fields.
They have to make the assumption that the algebraic number field contains only
{±1} as roots of unity. This is related to our computation in the case p = 2.
Our results, in particular, if we could handle instead of a prime p any natural
number, may be useful to extend their program to the arbitrary case. However,
the complexity we already encounter in the case of a prime p shows that this is a
difficult task.

We are also interested in the slightly more difficult real case because of applica-
tions to the question whether a closed smooth spin manifold carries a Riemannian
metric with positive scalar curvature (see Theorem 0.7). The numbers rl appearing
in the next theorem will be defined in (1.4) and analyzed in Subsection 1.3.
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Theorem 0.6 (Topological K-theory of the real group C∗-algebra). Let p be an
odd prime. Let Γ = Zn ⋊ Z/p be a group satisfying Condition 0.1. Then for all
m ∈ Z :

(i)

KOm(C∗
r (Γ;R))

∼=

{
Zpk(p−1)/2 ⊕ (

⊕n
l=0 KOm−l(∗)

rl) m even;⊕n
l=0 KOm−l(∗)

rl m odd.

(ii) There is an exact sequence

0→
⊕

(P )∈P

K̃O
Z/p

2m (∗)→ KO2m(C∗
r (Γ;R))→ KO2m(BΓ)→ 0,

where K̃O
Z/p

m (∗) = ker
(
KO

Z/p
m (∗)→ KOm(∗)

)
∼= Z(p−1)/2. The exact

sequence is split after inverting p.
(iii) The map

KO2m+1(C
∗
r (Γ;R))

∼=
−→ KO2m+1(BΓ)

is an isomorphism. Restricting to the subgroup Zn of Γ induces an iso-
morphism

KO2m+1(C
∗
r (Γ;R))

∼=
−→ KO2m+1(C

∗
r (Z

n
ρ ;R))

Z/p.

If M is a closed spin manifold of dimension m with fundamental group G, one
can define an invariant α(M) ∈ KOm(C∗

r (G;R)) as the index of a Dirac operator.
If M admits a metric of positive scalar curvature, then α(M) = 0. This theory
and connections with the Gromov-Lawson-Rosenberg Conjecture will be reviewed
in Subsection 12.1.

Theorem 0.7 ((Unstable) Gromov-Lawson-Rosenberg Conjecture). Let p be an
odd prime. Let M be a closed spin manifold of dimension m ≥ 5 and fundamental
group Γ as defined in (0.2). Then M admits a metric of positive scalar curvature if
and only if α(M) is zero. Moreover if m is odd, then M admits a metric of positive
scalar curvature if and only if the p-sheeted covering associated to the projection
Γ→ Z/p does.

Example 0.8. Here is an example where the last sentence of Theorem 0.7 applies.
Choose an odd integer k > 1. Let M be a balanced product Sk×ΓR

n where Γ acts
on the sphere via the projection Γ → Z/p and a free action of Z/p on the sphere
and Γ acts on Rn via its crystallographic action. Then its p-fold cover Sk × T n

admits a metric of positive scalar curvature since it is a spin boundary, and hence
M admits a metric of positive scalar curvature.

Remark 0.9. Notice that Theorem 0.7 is not true for Z4 × Z/3 (see Schick [38]),
whereas it is true for Z4 ⋊ρ Z/3 for appropriate ρ by Theorem 0.7.

The computation of the topological K-theory of the reduced complex group C∗-
algebra C∗

r (Γ) and of the reduced real group C∗-algebra C∗
r (Γ;R) will be done in a

sequence of steps, passing in each step to a more difficult situation.
We will first compute the (co-)homology of BΓ and BΓ. A complete answer is

given in Theorem 1.7 and Theorem 2.1.
Then we will analyze the complex and real topological K-cohomology and K-

homology of BΓ and BΓ. A complete answer is given in Theorem 3.3, Theorem 4.3,
Theorem 5.1 and Theorem 6.3 except for the exact structure of the p-torsion in
K2m+1(BΓ), KO2m+1(BΓ), K2m(BΓ), and KO2m(BΓ).

In the third step we will compute the equivariant complex and real topological
K-theory of EΓ, and hence the K-theory of the complex and real C∗-algebras of Γ.



4 JAMES F. DAVIS AND WOLFGANG LÜCK

A complete answer is given in Theorem 0.3 and Theorem 0.6. It is rather surprising
that we can give a complete answer although we do not know the full answer for
BΓ.

Finally we use the Baum-Connes Conjecture to prove Theorem 0.3 and Theo-
rem 0.6 in Sections 11.

The proof of Theorem 0.7 will be presented in Section 12.
Although we are interested in the homological versions, it is important in each

step to deal first with the cohomological versions as well since we will make use of
the multiplicative structure and the Atiyah-Segal Completion Theorem.

This paper was financially supported by the Hausdorff Institute for Mathemat-
ics, the Max-Planck-Institut für Mathematik, the Sonderforschungsbereich 478 –
Geometrische Strukturen in der Mathematik –, the NSF-grant of the first author,
and the Max-Planck-Forschungspreis and the Leibniz-Preis of the second author.
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1. Group cohomology

In this section we compute the cohomology of BΓ and EΓ for the group Γ defined
in (0.2). It fits into a split exact sequence

1→ Zn ι
−→ Γ

π
−→ Z/p→ 1(1.1)

We write the group operation in Z/p and Γ multiplicatively and in Zn additively.
We fix a generator t ∈ Z/p and denote the value of ρ(t) by ρ : Zn → Zn. When
wish to emphasize that Zn is a Z[Z/p]-module, we denote it by Zn

ρ .
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1.1. Statement of the computation of the cohomology.

Notation 1.2 (EG and BG). For a discrete group G we let EG denote the clas-
sifying space for proper G-actions. Let BG be the quotient space G\EG.

Recall that a model for the classifying space for proper G-actions is a G-CW -
complex EG such that EGH is contractible if H ⊂ G is finite and empty otherwise.
Two models are G-homotopy equivalent. There is a G-map EG → EG which is
unique up to G-homotopy. Hence there is a map BG → BG, unique up to homo-
topy. If G is torsion-free, then EG = EG and BG = BG. For more information
about EG we refer for instance to the survey article [29].

We will write Hm(G) and Hm(G) instead of Hm(BG) and Hm(BG).

Example 1.3 (EΓ and BΓ). Since the group Γ is crystallographic and hence acts
properly on Rn by smooth isometries, a model for EΓ is given by Rn with this
Γ-action. In particular BΓ is a quotient of the n-torus T n by a Z/p-action.

The main result of this section is the computation of the group cohomology of
BΓ and BΓ. Most of the calculation for H∗(BΓ) has already been carried out by
Adem [3] and later, with different methods, by Adem-Ge-Pan-Petrosyan [5]. The
computation ofH∗(BΓ) has recently and independently obtained by different meth-
ods by Adem-Duman-Gomez [4]. We include a complete proof since the techniques
will be needed later when we compute topological K-theory.

Let

N = t0 + t+ · · ·+ tp−1 ∈ Z[Z/p]

be the norm element. Denote by I(Z/p) the augmentation ideal, i.e., the kernel of
the augmentation homomorphism Z[Z/p] → Z. Let ζ = e2πi/p ∈ C be a primitive
p-th root of unity. We have isomorphisms of Z[Z/p]-modules

Z[Z/p]/N ∼= Z[ζ] ∼= I(Z/p).

Define natural numbers for m, j, k ∈ Z≥0.

rm := rkZ

((
Λm(Z[ζ]k

)Z/p)
;(1.4)

aj :=
∣∣{(ℓ1, . . . , ℓk) ∈ Zk | ℓ1 + · · ·+ ℓk = j, 0 ≤ ℓi ≤ p− 1}

∣∣ ;(1.5)

sm :=

m−1∑

j=0

aj ,(1.6)

where here and in the sequel Λm means the m-th exterior power of a Z-module.
Notice that these numbers rm, aj and sm depend on k but we omit this from the
notation since k will be determined by the equation n = k(p−1) (see Lemma 1.9 (i))
and hence by Γ. Note that r0 = 1, r1 = 0, a0 = 1, a1 = k, s0 = 0, s1 = 1, and
s2 = k + 1. We will give more information about these numbers in Subsection 1.3.

Theorem 1.7 (Cohomology of BΓ and BΓ).

(i) For m ≥ 0

Hm(Γ) ∼=

{
Zrm ⊕ (Z/p)sm m even;

Zrm m odd.

(ii) For m ≥ 0 the restriction map

Hm(Γ)→ Hm(Zn
ρ )

Z/p

is split surjective. The kernel is isomorphic to (Z/p)sm if m is even and 0
if m is odd.
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(iii) The map induced by the various inclusions

ϕm : Hm(Γ)→
⊕

(P )∈P

Hm(P )

is bijective for m > n.
(iv) For m ≥ 0

Hm(BΓ) ∼=





Zrm m even;

Zrm ⊕ (Z/p)p
k−sm m odd,m ≥ 3;

0 m = 1.

Remark 1.8 (Multiplicative structure). A transfer argument shows that the kernel
of the restriction map Hm(Γ)→ Hm(Zn) is p-torsion. Theorem 1.7 together with
the exact sequence (1.14) implies that the map induced by the restrictions to the
various subgroups

Hm(Γ)→ Hm(Zn)⊕
⊕

(P )∈P

Hm(P )

is injective. The multiplicative structure of the target is obvious. This allows in
principle to detect the multiplicative structure on H∗(Γ).

1.2. Proof of Theorem 1.7. The proof of Theorem 1.7 needs some preparation.

Lemma 1.9. (i) We have an isomorphism of Z[Z/p]-modules,

Zn
ρ
∼= I1 ⊕ · · · ⊕ Ik,

where the Ij are non-zero ideals of Z[ζ].
We have

Zn
ρ ⊗Q ∼= Q(ζ)k;

n = k(p− 1).

(ii) Each non-trivial finite subgroup P of Γ is isomorphic to Z/p and its Weyl
group WΓP := NΓP/P is trivial.

(iii) There are isomorphisms

H1(Z/p;Zn
ρ )

∼=
−→ cok(ρ− id : Zn → Zn) ∼= (Z/p)k;

and a bijection

cok
(
ρ− id : Zn → Zn

) ∼=
−→ P := {(P ) | P ⊂ Γ, 1 < |P | <∞}.

If we fix an element s ∈ Γ of order p, the bijection sends the element
u ∈ Zn

ρ/(1− s)Zn
ρ to the subgroup of order p generated by us.

(iv) We have |P| = pk.
(v) There is a bijection from the Z/p-fixed set of the Z/p-space T n

ρ := Rn
ρ/Z

n
ρ

with H1(Z/p;Zn
ρ ). In particular (T n

ρ )
Z/p consists of pk points.

(vi) [Γ,Γ] = im (ρ− id : Zn → Zn).
(vii) Γ/[Γ,Γ] ∼= cok(ρ− id : Zn → Zn)⊕ Z/p = (Z/p)k+1.

Proof. (i) Let u ∈ Zn
ρ . Then N ·u is fixed by the action of t ∈ Z/p and hence is zero

by assumption. Thus Zn
ρ is a finitely generated module over the Dedekind domain

Z[Z/p]/N = Z[ζ]. Any finitely generated torsion-free module over a Dedekind
domain is isomorphic to a direct sum of non-zero ideals (see [35, page 11]). Since
Ij ⊗Q ∼= Q(ζ), we see rkZ(Ij) = p− 1.

(ii) This is obvious.

(iii) Since the norm element N acts trivially on Zn
ρ , we get

cok
(
ρ− id : Zn → Zn

)
= H1(Z/p;Zn

ρ ).
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We will show

H1(Z/p;Zn
ρ )
∼= Ĥ0(Z/p;H1(Zn

ρ ))
∼= (Z/p)k

in Lemma 1.10 (i). One easily checks that the map cok
(
ρ− id : Zn → Zn

)
→ P is

bijective.

(iv) This follows from assertion (iii).

(v) Consider the short exact sequence of Z[Z/p]-modules

0→ Zn
ρ → Rn

ρ → T n
ρ → 0

Then the long exact cohomology sequence

(Zn
ρ )

Z/p → (Rn
ρ )

Z/p → (T n
ρ )

Z/p → H1(Z/p;Zn
ρ )→ H1(Z/p;Rn

ρ )

is isomorphic to

0→ 0→ (T n
ρ )

Z/p → (Z/p)k → 0 .

(vi) For (i, p) = 1 we have (ζi − 1)/(ζ − 1) ∈ Z[ζ]× and hence we get ker(ρ− id) =
ker(ρi − id) = 0 and im(ρ− id) = im(ρi − id). This implies

[Γ,Γ] = im (ρ− id : Zn → Zn) .

(vii) The isomorphism

cok
(
ρ− id : Zn → Zn

)
⊕ Z/p

∼=
−→ Γ/[Γ,Γ]

sends (u, i) 7→ usi. �

Next will analyze the Hochschild-Serre Spectral sequence (see [11, page 171])

Ei,j
2 = Hi(Z/p;Hj(Zn

ρ ))⇒ Hi+j(Γ)

of the extension (1.1). We say that a spectral sequence collapses if all differentials
di,jr are trivial for r ≥ 2 and all extension problems are trivial. The basic properties

of the Tate cohomology Ĥi(G;M) of a finite group G with coefficients in a Z[G]-
module M are reviewed in Appendix A.

Lemma 1.10.

(i)

Ĥi(Z/p;Hj(Zn
ρ ))
∼=

⊕

ℓ1+···+ℓk=j
0≤ℓq≤p−1

Ĥi+j(Z/p;Z) =

{
(Z/p)aj i+ j even;

0 i+ j odd.

(ii) The Hochschild-Serre spectral sequence associated to the extension (1.1)
collapses.

Proof. (i) There is a sequence of Z[Z/p]-isomorphisms

H1(Zρ) ∼= homZ(H1(Z
n
ρ ),Z)

∼= homZ(Z
n
ρ ,Z)

∼= Zn
ρ∗ ,

where ρ(t)∗ : Zn → Zn for t ∈ Z/p is given by the transpose of the matrix describing
ρ(t) : Zn → Zn. The natural map given by the product in cohomology

ΛjH1(Zn)
∼=
−→ Hj(Zn)

is bijective and hence is a Z[Z/p]-isomorphism by naturality. Thus we obtain a
Z[Z/p]-isomorphism

Hj(Zn
ρ )
∼= ΛjZn

ρ∗ .
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Given a non-zero ideal I ⊂ Z[ζ], the inclusion of I into Z[ζ] induces an isomorphism
of Z(p)[ζ]-modules

I ⊗ Z(p)

∼=
−→ Z[ζ]⊗Z Z(p) = Z(p)[ζ].

This is true since Z(p)[ζ] is a discrete valuation ring, hence all ideals are principal.
Since Zn

ρ∗ is isomorphic to a direct sum of ideals of Z[ζ], we obtain for an appropriate
natural number k isomorphisms of Z[ζ] ⊗Z Z(p) = Z(p)[ζ]-modules

Hj(Zn
ρ )⊗Z Z(p)

∼= ΛjZn
ρ∗ ⊗Z Z(p)

∼= ΛjZ[ζ]k ⊗Z Z(p).

For every Z[Z/p]-module M the obvious map

Ĥi(Z/p;M)→ Ĥi(Z/p;M ⊗Z Z(p))

is bijective. Hence we obtain an isomorphism

Ĥi(Z/p;Hj(Zn
ρ ))
∼= Ĥi(Z/p; ΛjZ[ζ]k).

Since

Λ∗
(⊕

k

Z[ζ])
)
=
⊗

k

Λ∗(Z[ζ])

and Λl(Z[ζ]) = 0 for l ≥ p, we get

Λj(Z[ζ]k)) =
⊕

ℓ1+···+ℓk=j
0≤ℓq≤p−1

Λℓ1Z[ζ]⊗ · · · ⊗ ΛℓkZ[ζ].

Therefore we obtain an isomorphism

Ĥi(Z/p;Hj(Zn
ρ ))
∼=

⊕

ℓ1+···+ℓk=j
0≤ℓq≤p−1

Ĥi
(
Z/p; Λℓ1Z[ζ]⊗ · · · ⊗ ΛℓkZ[ζ]

)
).

Hence it suffices to show for l1, . . . , lk in {0, 1, . . . , p− 1}

Ĥi
(
Z/p; Λℓ1Z[ζ] ⊗ · · · ⊗ ΛℓkZ[ζ]

)
∼= Ĥi+

∑k
a=1 la(Z/p;Z).

This will be done by induction over j =
∑k

a=1 la. The induction beginning j = 0
is trivial, the induction step from j − 1 to j ≥ 1 done as follows. We can assume
without loss of generality that 1 ≤ l1 ≤ p− 1 otherwise permute the factors. There
is an exact sequence of Z[Z/p]-modules

0→ Z→ Z[Z/p]→ Z[ζ]→ 0.

where 1 ∈ Zmaps to the norm element N ∈ Z[Z/p]. Since this exact sequence splits
as an exact sequence of Z-modules, it induces an exact sequence of Z[Z/p]-modules

1→ Λl1−1Z[ζ]→ Λl1Z[Z/p]→ Λl1Z[ζ]→ 1,(1.11)

where the second map is induced by the epimorphism Z[Z/p] → Z[ζ] and the first
sends u1∧u2∧. . .∧ul1−1 to u′

1∧u
′
2∧. . .∧u

′
l1−1∧N , where u′

b ∈ Z[Z/p] is any element
whose image under the projection Z[Z/p] → Z[ζ] is ub. This is independent of the
choice of the u′

b-s since two such choices differ by a multiple of the norm element
N ∈ Z[Z/p].

We next show that the middle term of (1.11) is a free Z[Z/p]-module when
1 ≤ l1 ≤ p − 1. Since Z/p = {t0, t1, . . . , tp−1} is a Z-basis for Z[Z/p], we obtain a
Z-basis for Λl1Z[Z/p] by

{tI | I ⊂ Z/p, |I| = l1},

where tI = ti1 ∧ ti2 ∧ . . .∧ til1 for I = {i1, i2, . . . , il1} with 1 ≤ i1 < i2 < . . . < il1 ≤
p − 1. An element s ∈ Z/p acts on Λl1Z[Z/p] by sending the basis element tI to
±ts+I . The Z/p action on {I ⊂ Z/p, |I| = l1} which sends I to s+ I for s ∈ Z/p, is
free. Indeed, for s ∈ Z/p− {0}, the permutation of the p-element set Z/p given by
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a 7→ s+ a cannot have any proper invariant sets since the permutation has order p
and p is prime. This implies that the Z[Z/p]-module Λl1Z[Z/p] is free.

We obtain from the exact sequence (1.11) an exact sequence of Z[Z/p]-modules
with a free Z[Z/p]-module in the middle

1→ Λl1−1Z[ζ]⊗ Λℓ2Z[ζ] ⊗ · · · ⊗ ΛℓkZ[ζ]→ Λl1Z[Z/p]⊗ Λℓ2Z[ζ]⊗ · · · ⊗ ΛℓkZ[ζ]

→ Λl1Z[ζ]⊗ Λℓ2Z[ζ] ⊗ · · · ⊗ ΛℓkZ[ζ]→ 1.

Hence we obtain for i ∈ Z an isomorphism

Ĥi
(
Z/p; Λℓ1Z[ζ] ⊗ · · · ⊗ ΛℓkZ[ζ]

)
∼= Ĥi+1

(
Z/p; Λℓ1−1Z[ζ]⊗ · · · ⊗ ΛℓkZ[ζ]

)
.

Now apply the induction hypothesis. This finishes the proof of assertion (i).

(ii) Next we want to show that the differentials di,jr are zero for all r ≥ 2 and i, j.
By the checkerboard pattern of the E2-term it suffices to show for r ≥ 2 and that
the differentials d0,jr are trivial for r ≥ 2 and all odd j ≥ 1. This is equivalent to
show that for every odd j ≥ 1 the edge homomorphism (see Proposition A.5) 0

ιj : Hj(Γ)→ Hj(Zn
ρ )

Z/p = E0,j
2

i0s surjective. But Ĥ0(Z/p,Hj(Zn
ρ )) = 0 by assertion (i), so the norm map N =

ιj ◦trfj : Hj(Zn
ρ )Z/p → Hj(Zn

ρ )
Z/p is surjective (see TheoremA.3), so ιj is surjective.

It remains to show that all extensions are trivial. Since the composite

Hi+j(Γ)
trfi+j

−−−−→ Hi+j(Zn
ρ )

ιi+j

−−→ Hi+j(Γ)

is multiplication with p, the torsion in Hi+j(Γ) has exponent p. Since p · Ei,j
∞ =

p · Ei,j
2 = 0 for i > 0, all extensions are trivial and

HmΓ ∼=
⊕

i+j=m

Ei,j
∞ =

⊕

i+j=m

Ei,j
2 .

�

Proof of assertions (i) and (ii) of Theorem 1.7. These are direct consequences of
Lemma 1.10. �

Proof of assertion (iii) of Theorem 1.7. We obtain from [33, Corollary 2.11] to-
gether with Lemma 1.9 (ii) a cellular Γ-pushout

∐
(P )∈P Γ×P EP

i0
//

∐
(P )∈P

prP

��

EΓ

f

��∐
(P )∈P Γ/P

i1
// EΓ

(1.12)

where i0 and i1 are inclusions of Γ-CW -complexes, prP is the obvious Γ-equivariant
projection and P is the set of conjugacy classes of subgroups of Γ of order p. Taking
the quotient with respect to the Γ-action we obtain from (1.12) the cellular pushout

∐
(P )∈P BP

j0
//

∐
(P )∈P

prP

��

BΓ

f

��∐
(P )∈P ∗

j1
// BΓ

(1.13)
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where j0 and j1 are inclusions of CW -complexes, prP is the obvious projection. It
yields the following long exact sequence for m ≥ 0

(1.14) 0→ H2m(BΓ)
f
∗

−→ H2m(Γ)
ϕ2m

−−−→
⊕

(P )∈P

H̃2m(P )

δ2m

−−→ H2m+1(BΓ)
f
∗

−→ H2m+1(Γ)→ 0

where ϕ∗ is the map induced by the various inclusions P ⊂ Γ for (P ) ∈ P .
Now assertion (iii) follows from (1.14) since there is a n-dimensional model for

BΓ. �

We still need to prove assertion (iv) of Theorem 1.7.
In order to compute H∗(BΓ), we need to compute the kernel and image of ϕ2m.

Lemma 1.15. Let m ≥ 1.

(i) Let K2m be the kernel of ϕ2m. There is a short exact sequence

0→ K2m → H2m(Zn
ρ )

Z/p → Ĥ0(Z/p;H2m(Zn
ρ ))→ 0

where the first non-trivial map is the restriction of ι∗ : H2m(Γ)→ H2m(Zn
ρ )

Z/p

to K2m and the second non-trivial map is given by the quotient map ap-
pearing in the definition of Tate cohomology. It follows that K2m ∼= Zrm .

(ii) The image of ϕ2m is isomorphic to

ker
(
H2m(Γ)→ H2m(Zn

ρ )
Z/p
)
⊕ Ĥ0(Z/p;H2m(Zn

ρ ))
∼= (Z/p)s2m+1 .

Proof. (i) Let β ∈ H2(Z/p) ∼= Z/p be a generator. Let L2m be the kernel of

− ∪ π∗(β)n : H2m(Γ)→ H2m+2n(Γ).

We first claim that K2m = L2m. Indeed, the following diagram commutes

H2m(Γ)
ϕ2m

//

−∪π∗(β)n

��

⊕
(P )∈P H2m(P )

−∪βn

��

H2m+2n(Γ)
ϕ2m+2n

//
⊕

(P )∈P H2m+2n(P )

Since dim(BΓ) ≤ n, we have Hi+2n(BΓ) = 0 for i ≥ 1. Hence the lower horizontal
arrow is bijective by (1.14). The right vertical arrow is bijective. Thus K2m = L2m.

Recall that we have an descending filtration

H2m(Γ) = F 0,2m ⊃ F 1,2m−1 ⊃ · · · ⊃ F 2m,0 ⊃ F 2m+1,−1 = 0

such that F r,2m−1/F r+1,2m−r−1 ∼= Er,2m−r
∞ . Recall that E2,0

2 = H2(Z/p;H0(Zn
ρ )) =

H2(Z/p) so that we can think of β as an element in E2,0
2 . Recall that Ei,j

2 = Ei,j
∞

by Lemma 1.10 (ii). From the multiplicative structure of the spectral sequence we
see that the image of the map

− ∪ π∗(β)n : H2m(Γ)→ H2m+2n(Γ)
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lies in F 2n,2m and the following diagram commutes

(1.16) 0

��

0

��

F 1,2m−1
−∪π∗(β)n

∼=
//

��

F 2n+1,2m−1

��

H2m(Γ)
−∪π∗(β)n

//

��

F 2n,2m

��

E0,2m
∞ −∪βn

//

��

E2n,2m
∞

��

0 0

where the columns are exact. The upper horizontal arrow is bijective. Namely, one
shows by induction over r = −1, 0, 1, . . . , 2m− 1 that the map

− ∪ π∗(β)n : F 2m−r,r → F 2m−r+2n,r

is bijective. The induction beginning r = −1 is trivial since then both the source
and the target are trivial, and the induction step from r − 1 to r follows from the
five lemma and the fact that the map

−∪βn : E2m−r,r
∞ = H2m−r(Z/p;Hr(Zn

ρ ))→ E2m−r+2n,r
∞ = H2m−r+2n(Z/p;Hr(Zn

ρ ))

is bijective.
The bottom horizontal map in diagram (1.16) can be identified with the compo-

sition of the canonical quotient map

H0(Z/p;H2m(Zn
ρ ))→ Ĥ0(Z/p;H2m(Zn

ρ )).

with the isomorphism

− ∪ βn : Ĥ0(Z/p;H2m(Zn
ρ ))

∼=
−→ Ĥ2n(Z/p;H2m(Zn

ρ )).

So what do we know about diagram (1.16)? The top horizontal map is an isomor-
phism, the kernel of middle horizontal map is L2m, and the bottom horizontal map
is onto. We conclude from the snake lemma that the middle map is an epimorphism
and that we have a short exact sequence

0→ L2m → E0,2m
∞ → E2n,2m

∞ → 0.

The first non-trivial map is the composite of the inclusion K2m = L2m ⊂ H2m(Γ)
with the epimorphism

H2m(Γ)→ E0,2m
∞ = H2m(Zn

ρ )
Z/p

induced by the inclusion ι : Zn → Γ. We have already identified the second non-
trivial map (up to isomorphism) with the quotient map as desired. Hence the
sequence in assertion (i) is exact. Since the middle term is isomorphic to Zrm and
the right term is finite, Krm is also isomorphic to Zrm .

(ii) The exact sequence

0→ ker
(
H2m(Γ)→ H2m(Zn

ρ )
Z/p
)
→ H2m(Γ)

ι2m
−−→ H2m(Zn

ρ )
Z/p → 0

has the property that ι2m restricted to K2m is injective. Thus we can quotient by
K2m and ι2m(K2m) in the middle and right hand term respectively and maintain
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exactness. Hence we have the exact sequence

(1.17) 0→ ker
(
H2m(Γ)→ H2m(Zn

ρ )
Z/p
)
→ H2m(Γ)/K2m

→ Ĥ0(Z/p;H2m(Zn
ρ ))→ 0.

where we used assertion (ii) to compute the right hand term. We conclude from
Lemma 1.10

Ĥ0(Z/p;H2m(Zn
ρ ))

∼= (Z/p)a2m ;(1.18)

ker
(
H2m(Γ)→ H2m(Zn

ρ )
Z/p
)
∼=

2m⊕

i=1

Ei,2m−i ∼=

2m−1⊕

j=0

(Z/p)aj(1.19)

Since H2m(Γ)/K2m is isomorphic to a subgroup of
⊕

(P )∈P H̃2m(P ) by the long

exact cohomology sequence (1.14) it is annihilated by multiplication with p. Hence
the short exact sequence (1.17) splits and we conclude from (1.18) and (1.19)

H2m(Γ)/K2m ∼=

2m⊕

j=0

(Z/p)aj ∼= (Z/p)s2m+1 .

This finishes the proof of Lemma 1.15.
�

We conclude from the exact sequence (1.14), Theorem 1.7 (i), Lemma 1.9 (iv),
and Lemma 1.15

Corollary 1.20. For m ≥ 1 the long exact sequence (1.14) can be identified with

0→ Zr2m → Zr2m⊕(Z/p)s2m → (Z/p)p
k

→ Zr2m+1⊕(Z/p)p
k−s2m+1 → Zr2m+1 → 0,

Proof of assertion (iv) of Theorem 1.7. Obviously H0(BΓ) ∼= Z. Since (Zn)Z/p =
0 by assumption, we get H1(Γ) = 0 from assertion (ii) of Theorem 1.7. We conclude
H1(BΓ) ∼= 0 from the long exact sequence (1.14). The values of Hm(BΓ) for m ≥ 2
have already been determined in Corollary 1.20. Hence assertion (iv) of Theorem 1.7
follows. This finishes the proof of Theorem 1.7. �

1.3. On the numbers rm. In this subsection we collect some basic information
about the numbers rm, aj and sm introduced in (1.4),(1.5), and (1.6).

Since Zn acts freely on EΓ = Rn, we conclude from Lemma 1.9 (i) and Propo-
sition A.4

rm = rkQ

(
Λm
Q

(
Q(ζ)k)Z/p

))

= rkQ

(
Hm

(
BZn

ρ ;Q
)Z/p)

= rkQ
(
Hm

(
BΓ;Q)

)

= rkQ (Hm(Γ;Q))

Since Tate cohomology is rationally trivial, the norm map is a rational isomorphism,
hence also

rm = rkQ
(
Λm
Q (Q[ζ]k)⊗Q[Z/p] Q

)
.(1.21)

Lemma 1.22. (i) We have r0 = 1, r1 = 0, a0 = 1, a1 = k, s0 = 0, s1 = 1,
and s2 = k + 1. We get rm = 0 for m ≥ n+ 1 and sm = pk for m ≥ n.
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(ii) If p is odd, we get

∑

m≥0
m even

rm =
2(p−1)k + p− 1

2p
+

(p− 1) · pk−1

2
;

∑

m≥0
m odd

rm =
2(p−1)k + p− 1

2p
−

(p− 1) · pk−1

2
.

If p = 2, we get
∑

m≥0
m even

rm = 2n−1;

∑

m≥0
m odd

rm = 0.

(iii) Suppose that k = 1. Then

rm =
1

p
·

((
p− 1

m

)
+ (−1)m · (p− 1)

)
for 0 ≤ m ≤ (p− 1);

rm = 0 for m ≥ p;

am = 1 for 0 ≤ m ≤ p− 1;

am = 0 for p ≤ m;

sm = m for 0 ≤ m ≤ p− 1;

sm = p for m ≥ p.

Proof. In the proof below we write ΛlV instead of Λl
QV for a Q-vector space V .

(i) This follows directly from the definitions.

(ii) Suppose 1 ≤ l ≤ p− 1. By rationalizing the exact sequence (1.11) we have the
short exact sequence of Q[Z/p]-modules

0→ Λl−1Q[ζ]→ ΛlQ[Z/p]→ ΛlQ[ζ]→ 0.

Since ΛlZ[Z/p] is finitely generated free as Z[Z/p]-module (see proof of Lemma 1.10 (i)),
the following equation holds in the rational representation ring RQ(Z/p)

[
ΛlQ[ζ]

]
+
[
Λl−1Q[ζ]

]
=

1

p
·

(
p

l

)
·
[
Q[Z/p]

]
.(1.23)

One shows by induction over l for 0 ≤ l ≤ p− 1

[
Λl(Q[ζ])

]
= (−1)l · [Q] +

1

p

((
p− 1

l

)
− (−1)l

)
·
[
Q[Z/p]

]
.(1.24)

Since
∑p−1

l=0

(
p−1
l

)
= 2p−1, we get

p−1∑

l=0

[
ΛlQ[ζ]

]
=

{
[Q] + 2p−1−1

p ·
[
Q[Z/p]

]
if p is odd;

[Q[Z/2]] if p = 2.
(1.25)

Since

Λ∗
(⊕

k

Q[ζ]
)
=
⊗

k

Λ∗(Q[ζ])

and Λl(Q[ζ]) = 0 for l ≥ p, we get

[
Λj(Q[ζ]k)

]
=

∑

ℓ1+···+ℓk=j
0≤ℓi≤p−1

k∏

i=1

[
Λℓi(Q[ζ])

]
.(1.26)
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We conclude from (1.25) and (1.26)

∑

j≥0

[
Λj(Q[ζ]k)

]
=

∑

j≥0




∑

ℓ1+···+ℓk=j
0≤ℓi≤p−1

k∏

i=1

[
Λℓi(Q[ζ])

]



=
∑

l1,l2,...,lk
0≤ℓq≤p−1

k∏

i=1

[
Λℓi(Q[ζ])

]

=

k∏

i=1

∑

0≤ℓi≤p−1

[
Λℓi(Q[ζ])

]

=





(
[Q] + 2p−1−1

p ·
[
Q[Z/p]

])k
if p is odd;

[Q[Z/2]]k if p = 2.

Since [Q] is the multiplicative unit in RQ(Z/p), and
[
Q[Z/p]

]i
= pi−1 ·

[
Q[Z/p]

]
,

we obtain the following equality in RQ(Z/p) if p is odd:

∑

j≥0

[
Λj(Q[ζ]k)

]
=

k∑

i=0

(
k

i

)
·
(2p−1 − 1)i

pi
·
[
Q[Z/p]

]i
· [Q]k−i

= [Q] +
1

p
·

(
−1 +

k∑

i=0

(
k

i

)
(2p−1 − 1)i

)
·
[
Q[Z/p]

]

= [Q] +
1

p
·
(
−1 + 2(p−1)k

)
·
[
Q[Z/p]

]

= [Q] +
2(p−1)k − 1

p
·
[
Q[Z/p]

]
.(1.27)

If p = 2, we obtain
∑

j≥0

[
Λj(Q[ζ]k)

]
= 2k−1 · [Q[Z/2]].

There is a homomorphism of abelian groups

Φ: RQ(Z/p)→ Z, [V ] 7→ rkQ
(
V ⊗Q[Z/p] Q

)
.

By (1.21) it sends Q, Q[Z/p], and
[
Λm(Q[ζ]k)

]
to 1, 1, and rm respectively. Hence

we conclude from (1.27)

∑

m≥0

rm =
2(p−1)k − 1

p
+ 1 for p odd;(1.28)

∑

m≥0

rm = 2k−1 for p = 2.(1.29)

If X is a finite Z/p-CW-complex with orbit space X, then the Riemann-Hurwitz
formula states that

χ(X) =
1

p
χ(X) +

p− 1

p
χ(XZ/p).

One derives this formula by verifying it for both fixed and freely permuted cells.
Applying Proposition A.4, the Riemann-Hurwitz formula, and Lemma 1.9 (v) to
the Z/p-action on the torus T n, one sees

∑

m≥0

(−1)mrm = χ((Z/p)\Tm) = 0 + (p− 1)pk−1.(1.30)
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We conclude from (1.28) and (1.30) if p is odd

∑

m≥0
m even

rm =
2(p−1)k + p− 1

2p
+

(p− 1) · pk−1

2
;(1.31)

∑

m≥0
m odd

rm =
2(p−1)k + p− 1

2p
−

(p− 1) · pk−1

2
.(1.32)

If p = 2, we obtain from (1.29) and (1.30) since n = k · (p− 1)
∑

m≥0
m even

rm = 2n−1;(1.33)

∑

m≥0
m odd

rm = 0.(1.34)

(iii) The first formula follows from (1.21) and applying the homomorphism Φ to
(1.24). The rest of (iii) is clear from the definitions. �

2. Group homology

Next we determine the group homology of the group Γ. Recall that for a Z[G]-
module M , the coinvariants are MG = M ⊗Z[G] Z.

Theorem 2.1 (Homology of BΓ and BΓ).

(i) For m ≥ 0,

Hm(Γ) ∼=

{
Zrm ⊕ (Z/p)sm+1 m odd;

Zrm m even.

(ii) For m ≥ 0, the inclusion map Zn → Γ induces an isomorphism

H2m(Zn
ρ )Z/p

∼=
−→ H2m(Γ).

(iii) The map induced by the various inclusions

ϕm :
⊕

(P )∈P

Hm(P )→ Hm(Γ)

is bijective for m > n.
(iv) For m ≥ 0,

Hm(BΓ) ∼=





Zrm m odd;

Zrm ⊕ (Z/p)p
k−sm+1 m even,m ≥ 2;

Z m = 0.

(v) For m ≥ 1 the long exact homology sequence associated to the pushout (1.13)

0→ H2m(Γ)→ H2m(BΓ)→
⊕

(P )∈P

H2m−1(P )

→ H2m−1(Γ)→ H2m−1(BΓ)→ 0

can be identified with

0→ Zr2m → Zr2m ⊕ (Z/p)p
k−s2m+1 → (Z/p)p

k

→ Zr2m−1 ⊕ (Z/p)s2m → Zr2m−1 → 0.
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Proof. (i) (iii) (iv) and (v) Recall there is a exact sequence

(2.2) 0 → Ext1Z(H
n+1(X),Z) → Hn(X) → homZ(H

n(X),Z) → 0

for every CW -complex X with finite skeleta, natural in X . This, Theorem 1.7 and
Corollary 1.20 imply (i), (iv), and (v).

(ii) Here again we use the Hochschild-Serre spectral sequence

E2
i,j = Hi(Z/p;Hj(Z

n
ρ )) =⇒ Hi+j(Γ).

Then the Universal Coefficient Theorem, Lemma A.1, and Lemma 1.10 (i) imply
that for i+ j even,

Ĥi+1(Z/p;Hj(Z
n
ρ ))
∼= Ĥi+1(Z/p;Hj(Zn

ρ )
∗) ∼= Ĥ−i−1(Z/p;Hj(Zn

ρ )) = 0.

Hence E2
i,j = 0 when i + j is even and i > 0. Since Ĥ−1(Z/p;H2m(Zn

ρ )) = 0, the
norm map

H2m(Zn
ρ )Z/p → H2m(Zn

ρ )
Z/p

is injective. Thus E2
0,2m = H2m(Zn

ρ )Z/p is torsion-free. Since for i > 0, E2
i,j is

torsion,

H2m(Zn
ρ )Z/p = E2

0,2m = E∞
0,2m

∼=
−→ H2m(Γ).

�

3. K-cohomology

Next we analyze the values of complex K-theory K∗ on BΓ and BΓ. Recall that
by Bott periodicity K∗ is 2-periodic, K0(∗) = Z, and K1(∗) = 0.

A rational computation of K∗(BG) ⊗ Q has been given for groups G with a
cocompact G-CW -model for EG in [30, Theorem 0.1], namely

Km(BG) ⊗Q
∼=
−→

(∏

l∈Z

H2l+m(BG;Q)

)
×


 ∏

q prime

∏

(g)∈conq(G)

∏

l∈Z

H2l+m(BCG〈g〉;Qq̂)


 ,

where conq(G) is the set of conjugacy classes (g) of elements g ∈ G of order qd for
some integer d ≥ 1 and CG〈g〉 is the centralizer of the cyclic subgroup 〈g〉.

It gives in particular forG = Γ because of Theorem 1.7 (ii) and (i) and Lemma 1.9

K0(BΓ)⊗Q ∼= Q
∑

l∈Z
r2l ⊕ (Qp̂)

(p−1)pk

;(3.1)

K1(BΓ)⊗Q ∼= Q
∑

l∈Z
r2l+1 .(3.2)

Recall that we have computed
∑

l∈Z r2l and
∑

l∈Z r2l+1 in Lemma 1.22 (ii).
We are interested in determining the integral structure, namely, we want to show

Theorem 3.3 (K-cohomology of BΓ and BΓ).

(i) For m ∈ Z,

Km(BΓ) ∼=

{
Z
∑

l∈Z r2l ⊕ (Zp̂)
(p−1)pk

m even;

Z
∑

l∈Z
r2l+1 m odd;

Here Zp̂ is the p-adic integers.
(ii) There is a split exact sequence of abelian groups

0→ (Zp̂)
(p−1)pk

→ K0(BΓ)→ K0(BZn
ρ )

Z/p → 0

and K0(BZn
ρ )

Z/p ∼= Z
∑

l∈Z
r2l .
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(iii) Restricting to the subgroup Zn of Γ induces an isomorphism

K1(BΓ)
∼=
−→ K1(BZn

ρ )
Z/p

and K1(BZn
ρ )

Z/p ∼= Z
∑

l∈Z
r2l+1 .

(iv) We have

K0(BΓ) ∼= Z
∑

l∈Z
r2l .

(v) We have

K1(BΓ) ∼= Z
∑

l∈Z
r2l+1 ⊕ T 1

for a finite abelian p-group T 1 for which there exists a filtration

T 1 = T 1
1 ⊃ T 1

2 ⊃ · · · ⊃ T 1
[(n/2)+1] = 0

such that

T 1
i /T

1
i+1 = (Z/p)ti for i = 1, 2, . . . , [(n/2) + 1]

for integers ti which satisfy 0 ≤ ti ≤ pk − s2i+1.
(vi) The map K1(BΓ)→ K1(BΓ) induces an isomorphism

K1(BΓ)/p- torsion
∼=
−→ K1(BΓ)

Its kernel is isomorphic to T 1 and is isomorphic to the cokernel of the map

K0(BΓ)
ϕ0

−→
⊕

(P )∈P

K̃0(BP ).

The proof of Theorem 3.3 needs some preparation. We will use two spectral
sequences. The Atiyah-Hirzebruch spectral sequence (see [42, Chapter 15]) for topo-
logical K-theory

Ei,j
2 = Hi(BΓ;Kj(∗))⇒ Ki+j(BΓ)

converges since BΓ has a model which is a finite dimensional CW -complex. We
also use the Leray-Serre spectral sequence (see [42, Chapter 15]) of the fibration

BZn → BΓ → BZ/p. Recall that its E2-term is Ei,j
2 = Hi(Z/p;Kj(BZn

ρ )) and

it converges to Ki+j(BΓ). The Leray-Serre spectral sequence converges (with no

lim1-term) by [31, Theorem 6.5].

Lemma 3.4. In the Atiyah-Hirzebruch spectral sequence converging to K∗(BΓ),

Ei,j
∞
∼=





Zri i even, j even;

Zri ⊕ (Z/p)t
′

i i odd, i ≥ 3, j even;

0 i = 1, jeven;

0 j odd.

where 0 ≤ t′i ≤ pk − si.
Proof. Since BΓ has a finite CW -model, all differentials in the Atiyah-Hirzebruch
spectral sequence converging to K∗(BΓ) are rationally trivial and there exists an

N so that for all i, j, Ei,j
N = Ei,j

∞ . The E2-term of the Atiyah-Hirzebruch spectral
sequence converging to K∗(BΓ) is given by Theorem 1.7 (i)

Ei,j
2 = Hi(BΓ;Kj(∗)) ∼=





Zri i even, j even;

Zri ⊕ (Z/p)p
k−si i odd, i ≥ 3, j even;

0 i = 1, j even;

0 j odd.

A map with a torsion free abelian group as target is already trivial, if it vanishes
rationally. Now consider (i, j) such that it is not true that i is odd and j is even.
Then one shows by induction over r ≥ 2 that Ei,j

r is zero for odd j and Zri for
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even j, the differential ending at (i, j) in the Er-term is trivial and the image of

the differential starting at (i, j) is finite, and Ei,j
r is an abelian subgroup of Ei,j

r+1

of finite index. Next consider (i, j) such that i is odd and j is even. Then one
shows by induction over r ≥ 2 that the image of the differential ending at (i, j) in

the Er-term lies in the torsion subgroup of Ei,j
r+1, the differential starting at (i, j)

is trivial, the rank of Ei,j
r+1 is ri and its torsion subgroup is isomorphic to Z/pt for

some t with t ≤ pk − si.
This finishes the proof of Lemma 3.4. �

Lemma 3.5.

(i) For every m ∈ Z, there is an isomorphism of Z[Z/p]-modules

Km(BZn
ρ )
∼=
⊕

l

Hm+2l(Zn
ρ );

In particular we get

Km(BZn
ρ )

Z/p ∼= Z
∑

l
rm+2l .

(ii)

Ĥi(Z/p;Kj(BZn
ρ ))
∼=
⊕

l∈Z

Ĥi(Z/p;Hj+2l(Zn
ρ ))
∼=

{
(Z/p)

∑
l∈Z

aj+2l i+ j even,

0 i+j odd.

(iii) All differentials in the Leray-Serre spectral sequence are trivial.
Proof. (i) Since K∗(∗) is torsion free, Lemma 3.6 below shows that the Chern
character gives an isomorphism

chm : Km(T n)
∼=
−→

⊕

i+j=m

Hi(T n;Kj(∗)) =
⊕

l

Hm+2l(T n)

Since T n is a model for the Z/p-space BZn
ρ and chm is natural with respect to

self-maps of the torus, chm is an isomorphism of Z[Z/p]-modules.
Since Hm+2l(Zn

ρ )
Z/p ∼= Zrm+2l by Theorem 1.7 (ii) and (i), assertion (i) follows.

(ii) This follows from Lemma 1.10 (i) and assertion (i).

(iii) Next we want to show that the differentials di,jr are zero for all r ≥ 2 and
i, j. By the checkerboard pattern of the E2-term it suffices to show for r ≥ 2 that
the differentials d0,jr are trivial for r ≥ 2 and all odd j ≥ 1. This is equivalent to
showing that for every odd j ≥ 1 the edge homomorphism (see Proposition A.5)

ιj : Kj(BΓ)→ Kj(BZn
ρ )

Z/p = E0,j
2

is surjective. To show this we use the transfer, whose properties are reviewed in

Appendix A. For j odd, Ĥ0(Z/p,Kj(Zn
ρ )) = 0 by assertion (ii). Thus the norm

map N = ιj ◦ trfj is surjective, and so ιj is surjective as desired. �

Let H∗ be a generalized homology theory and H∗ a generalized cohomology
theory. Dold defined (see [15] and [26, Example 4.1]) Chern characters

chm :
⊕

i+j=m

Hi(X,Y ;Hj(∗))→ Hm(X,Y )⊗Q

chm : Hm(X,Y )→
⊕

i+j=m

Hi(X,Y ;Hj(∗))⊗Q.

The homological Chern character is a natural transformations of homology theories
defined on the category of CW -pairs. When X = ∗, then chm = iQ : Hm(∗) =
Hm(∗) ⊗ Z → Hm(∗) ⊗ Q, after the obvious identification of the targets. Hence
these Chern characters are rational isomorphisms for any CW -pair. In cohomology
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there are parallel statements after restricting oneself to the category of finite CW -
pairs. (If the disjoint union axiom is fulfilled, finite dimensional suffices).

A CW -pair (X,Y ) is H∗-Chern integral if for all m,

iQ : Hm(X,Y )→ Hm(X,Y )⊗Q

is a monomorphism, and chm gives an isomorphism onto the image of iQ. There is
a similar definition of H∗-Chern integral for finite CW -pairs.

Lemma 3.6 (Chern character).

(i) A point is H∗-Chern integral if and only if H∗(∗) is torsion free.
(ii) If X is H∗-Chern integral, then so is X × S1.

Similar statements hold in cohomology.
Proof. (i) If a point is H∗(∗)-Chern integral, then H∗(∗)→ H∗(∗)⊗Q is injective,
hence H∗(∗) is torsion free. If H∗(∗) is torsion free, then iQ is injective. Since
chm = iQ, a point is H∗(∗)-Chern integral.

(ii) Consider the following commutative diagram with split exact columns.

0

��

0

��

0

��⊕
i+j=m

Hi(X ×D1;Hj(∗))

��

chm
// Hm(X ×D1)⊗Q

��

Hm(X ×D1)

��

iQ
oo

⊕
i+j=m

Hi(X × S1;Hj(∗))

OO�

�

�

��

chm
// Hm(X × S1)⊗Q

��

OO�

�

�

�

Hm(X × S1)

��

iQ
oo

OO�

�

�

�

⊕
i+j=m

Hi(X × (S1, D1);Hj(∗))

��

chm
// Hm(X × (S1, D1))⊗Q

��

Hm(X × (S1, D1))

��

iQ
oo

0 0 0

The columns come from the long exact sequence of a pair where D1 is included
in S1 as the upper semicircle. The splitting maps are given by a constant map
S1 → D1. It is elementary to see that the bottom row is isomorphic to

⊕

i+j=m−1

Hi(X ;Hj(∗))
chm−1
−−−−→ Hm−1(X)⊗Q

iQ
←− Hm−1(X).

Since X is H∗-Chern integral, so are X × (D1, S1) and X × D1. It follows that
X × S1 is H∗-Chern integral as desired. �

Proof of Theorem 3.3. (iv) (v) These assertions follow from the Atiyah-Hirzebruch
spectral sequence converging to K∗(BΓ) using Lemma 3.4.

(ii) (iii) (vi) We first claim that for all m ∈ Z, the inclusion ι : Zn → Γ induces an
epimorphism

ιm : Km(BΓ)→ Km(BZn
ρ )

Z/p

and Km(BZn
ρ )

Z/p ∼= Z
∑

l∈Z
rm+2l. We will also show that for m odd, the map ιm is

an isomorphism. By Lemma 3.5 (iii), the Leray-Serre spectral sequence collapses,

so E0,m
2 = E0,m

∞ . Hence the edge homomorphism ιm is onto (see Proposition A.5).
The computation of Km(BZn

ρ ) is given in Lemma 3.5 (i). Now assume m is odd.
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For any i > 0, Ei,m−i
2 = 0 by Lemma 3.5 (ii). Hence Hm(BΓ) = E0,m

∞ , so the edge
homomorphism is injective. We have now proved assertion (iii) of our theorem.

We next note that for all m ∈ Z, the kernel and cokernel of the composite

Km(BΓ)→ Km(BΓ)→ Km(BZn
ρ )

Z/p

are finitely generated abelian p-groups. This follows from Proposition A.4 and the
following commutative diagram

BZn
ρ = T n × S∞ ≃

//

π

��

T n = Rn/Zn

π

��

BΓ = T n ×Z/p S
∞ // BΓ = Rn/Γ

By Lemma 1.9 (iv), the number of conjugacy classes of order p subgroups of Γ
is pk. By the Atiyah-Segal Completion Theorem (see [8])

K̃m(BZ/p) ∼=

{
IC(Z/p)⊗ Zp̂

∼= (Zp̂)
p−1 if m even;

0 if m odd.
(3.7)

where IC(Z/p) ⊂ RC(Z/p) is the augmentation ideal. Hence
⊕

(P )∈P

K̃0(BP ) ∼= (Zp̂)
(p−1)pk

.

We are now in a position to analyze the long exact sequence

(3.8) 0→ K0(BΓ)
f
0

−→ K0(BΓ)
ϕ0

−→
⊕

(P )∈P

K̃0(BP )
δ0
−→ K1(BΓ)

f
1

−→ K1(BΓ)→ 0

associated to the cellular pushout (1.13). We will work from right to left.

Since K1(BΓ) ∼= K1(BZn
ρ )

Z/p is torsion free, it follows that the kernel of f
1

equals T 1, the p-torsion subgroup of K1(BΓ). By exactness of (3.8), T 1 also equals
the cokernel of ϕ0. This completes the proof of assertion (vi).

We showed above that ker f
1
= im δ0 is a finite abelian p-group. It follows

that ker δ0 = im ϕ0 is also isomorphic to (Zp̂)
(p−1)pk

since any finite abelian p-
group A is p-adically complete, and hence a Zp̂-module, a Z-homomorphism from

(Zp̂)
(p−1)pk

→ A is automatically a Zp̂-homomorphism and Zp̂ is a principal ideal
domain.

Consider the commutative diagram with exact rows

0 // K0(BΓ) //

ι0

��

K0(BΓ) //

ι0

��

im ϕ0 //

��

0

0 // K0(BZn
ρ )

Z/p // K0(BZn
ρ )

Z/p // 0 // 0.

We have already seen that the middle vertical map is surjective with free abelian
target, hence split surjective. Let K be the kernel of ι0. Then by the Snake Lemma,
there is a short exact sequence

0→ K → im ϕ0 → coker(ι0)→ 0.

As we noted above, im ϕ0 ∼= (Zp̂)
(p−1)pk

and coker (ι0) is a finite abelian p-group.

Thus K is also isomorphic to (Zp̂)
(p−1)pk

. This completes the proof of assertion (ii).

(i) This follows from assertions (ii) and (iii).
This finishes the proof of Theorem 3.3. �
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4. K-homology

In this section we compute complex K-homology of BΓ and BΓ. Rationally this
can be done using the Chern character of Dold [15] which gives for every CW -
complex a natural isomorphism

⊕

l∈Z

Hm+2l(X)⊗Q
∼=
−→ KOm(X)⊗Q.

In particular we get from Theorem 2.1 (i) and (iv)

Km(BΓ)⊗Q ∼= Q
∑

l∈Z rm+2l ;(4.1)

Km(BΓ)⊗Q ∼= Q
∑

l∈Z rm+2l(4.2)

We are interested in determining the integral structure, namely, we want to show

Theorem 4.3 (K-homology of BΓ and BΓ).

(i) For m ∈ Z,

Km(BΓ) ∼=

{
Z
∑

l∈Z
r2l m even;

Z
∑

l∈Z
r2l+1 ⊕ (Z/p∞)(p−1)pk

m odd;

Here Z/p∞ = colimn→∞ Z/pn ∼= Z[1/p]/Z.
(ii) The inclusion map Zn → Γ induces an isomorphism

K0(BZn
ρ )Z/p

∼=
−→ K0(BΓ)

and K0(BZn
ρ )Z/p

∼= Z
∑

l∈Z
r2l .

(iii) There is a split short exact sequence of abelian groups

0→ (Z/p∞)(p−1)pk

→ K1(BΓ)→ K1(BΓ)→ 0.

(iv) We have

K0(BΓ) ∼= Z
∑

l∈Z
r2l ⊕ T 1,

where T 1 is the finite abelian p-group appearing in Theorem 3.3 (v).
(v) We have

K1(BΓ) ∼= Z
∑

l∈Z r2l+1 .

(vi) The group T 1 is isomorphic to a subgroup of the kernel of
⊕

(P )∈P

K1(BP )→ K1(BΓ).

Its proof needs some preparation.

Theorem 4.4 (Universal Coefficient Theorem forK-theory). For any CW -complex
X there is a short exact sequence

0→ ExtZ(K∗−1(X),Z)→ K∗(X)→ homZ(K∗(X),Z)→ 0.

If X is a finite CW -complex, there is also the K-homological version

0→ ExtZ(K
∗+1(X),Z)→ K∗(X)→ homZ(K

∗(X),Z)→ 0.

Proof. A proof for the first short exact sequence can be found in [6] and [45, (3.1)],
the second sequence follows then from [1, Note 9 and 15]. �

Proof of Theorem 4.3. (iv) (v) These assertions follow from Theorem 3.3 (iv)
and (v) and Theorem 4.4 since there is a finite CW -model for BΓ, namely Γ\Rn.

(iii) We will use Pontryagin duality for locally compact abelian groups. For such a

group G, the Pontryagin dual Ĝ is hom(G,S1), given the compact-open topology.

A reference for the basic properties is [17]. These include: Ĝ is also a locally com-
pact abelian group. The natural map from G to its double dual is a isomorphism.
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G is discrete if and only if Ĝ is compact. If 0→ A→ B → C → 0 is exact, then so

is 0→ Ĉ → B̂ → Â→ 0. Our primary example of duality is

Ẑ/p∞ ∼= Zp̂.

Here Z/p∞ is given the discrete topology and the p-adic integers Zp̂ are given the
p-adic topology. This statement is included in [17, paragraph 25.2], but also follows
from the following assertion proved in [24, 20.8] if H1 → H2 → H3 → · · · is a
sequence of maps of locally compact abelian groups, then

̂colim
n→∞

Hn
∼= lim

n→∞
Ĥn

We will now give the computation ofK∗(BZ/p). The Atiyah-Hirzebruch Spectral

Sequence shows that K̃0(BZ/p) = 0. Vick [43] shows that K1(BG) is the Pontrya-

gin dual of K̃0(BG) for any finite group G. Applying these facts to G = Z/p we
get (see also Knapp [21, Proposition 2.11])

Km(BZ/p) ∼=

{
(Z/p∞)p−1 if m is odd;

Z if m is even.
(4.5)

Thus the long exactK-homology sequence associated to the cellular pushout (1.13)
reduces to the exact sequence

0→ K0(BΓ)
f0−→ K0(BΓ)

∂0−→
⊕

(P )∈P

K1(BP )
ϕ0
−→ K1(BΓ)

f1−→ K1(BΓ)→ 0.(4.6)

Note that im ∂0 is a finite abelian p-group, since it is a finitely generated subgroup
of the p-torsion group

⊕

(P )∈P

K1(BP ) ∼= (Z/p∞)(p−1)pk

.

Dualizing the exact sequence

0→ im ∂0 → (Z/p∞)(p−1)pk

→ imϕ0 → 0,

we see that îmϕ0 has finite p-power index in (Zp̂)
(p−1)pk

hence is itself isomorphic

to (Zp̂)
(p−1)pk

(compare the proof of Theorem 3.3 (iv) and (v)). Dualizing again,

we see imϕ0
∼= (Z/p∞)(p−1)pk

.
The map f1 is split surjective since its target is free abelian by assertion (v).

(ii) The Universal Coefficient Theorem inK-theory shows thatK0(BZn
ρ )
∼= K0(BZn

ρ )
∗.

In Lemma 3.5 we showed there is an isomorphism of Z[Z/p]-modules K0(BZn
ρ )
∼=

⊕ℓH
2ℓ(Zn

ρ ). Now we proceed exactly as in the proof of Theorem 2.1 (ii), using the
Leray-Serre spectral sequence

E2
i,j = Hi(Z/p;Kj(BZn

ρ )) =⇒ Ki+j(BΓ).

One shows E2
0,2m = K2m(BZn

ρ )Z/p is torsion-free, and for i > 0, E2
i,j has exponent

p and vanishes if i+ j is even. Thus

K2m(BZn
ρ )Z/p = E2

0,2m = E∞
0,2m

∼=
−→ K2m(BΓ).

By Remark A.2 and the Universal Coefficient Theorem, (K2m(BZn
ρ )Z/p)

∗ ∼=

K2m(BZn
ρ )

Z/p which is isomorphic to Z
∑

l∈Z
r2l by Lemma 3.5 (i).

(i) This follows from assertions (ii), (iii), and (v).

(vi) This follows from assertion (iv) and the exact sequence (4.6). This finishes the
proof of Theorem 4.3. �
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5. KO-cohomology

In this section we compute real K-cohomology KO∗ of BΓ.
Recall that by Bott periodicity KO∗ is 8-periodic, i.e., there is a natural iso-

morphism KOm(X) ∼= KOm+8(X) for every m ∈ Z and CW -complex X , and
KO−m(∗) is given for m = 0, 1, 2, . . .7 by Z, Z/2, Z/2, 0, Z, 0, 0, 0. We will
assume from now on that p is odd in order to avoid the extra difficulties arising
from the fact that KOm(∗) ∼= Z/2 for m = 1, 2.

Theorem 5.1 (KO-cohomology of BΓ and BΓ). Let p be an odd prime and let m
be any integer.

(i)

KOm(BΓ) ∼=

{(
⊕l∈ZKOm−l(∗)rl

)
⊕ (Zp̂)

pk(p−1)//2 m even;

⊕l∈ZKOm−l(∗)rl m odd.

(ii) There is a split exact sequence of abelian groups

0→ (Zp̂)
pk(p−1)/2 → KO2m(BΓ)→ KO2m(BZn

ρ )
Z/p → 0,

and KO2m(BZn
ρ )

Z/p ∼=
⊕

l∈Z KO2m−l(∗)rl .
(iii) Restricting to the subgroup Zn of Γ induces an isomorphism

KO2m+1(BΓ)
∼=
−→ KO2m+1(BZn

ρ )
Z/p.

and KO2m+1(BZn
ρ )

Z/p ∼=
⊕

l∈ZKO2m+1−l(∗)rl .
(iv) We have

KO2m(BΓ) ∼= ⊕l∈ZKO2m−l(∗)rl .

(v) We have

KO2m+1(BΓ) ∼=

(⊕

l∈Z

KO2m+1−l(∗)rl

)
⊕ TO2m+1,

where TO2m+1 is a finite abelian p-group for which there exists a filtration

TO2m+1 = TO2m+1
1 ⊃ TO2m+1

2 ⊃ · · · ⊃ TO2m+1
[(n+4−(−1)m)/4] = 0

such that TO2m+1
i /TO2m+1

i+1 = (Z/p)toi holds for integers toi which satisfy

0 ≤ toi ≤ pk − s4i+(−1)m .

(vi) The map KO2m+1(BΓ)→ KO2m+1(BΓ) induces an isomorphism

KO2m+1(BΓ)/p- torsion
∼=
−→ KO2m+1(BΓ).

Its kernel is isomorphic to TO2m+1 and is isomorphic to the cokernel of
the map

KO2m+2(BΓ)→
⊕

(P )∈P

K̃O
2m+2

(BP ).

Lemma 5.2. Let p be an odd prime. In the Atiyah-Hirzebruch spectral sequence
converging to K∗(BΓ) after localizing at p

(
Ei,j

∞

)
(p)
∼=





Zri
(p) i even, j ≡ 0 (mod 4);

Zri
(p) ⊕ (Z/p)t

′

i i odd, i ≥ 3, j ≡ 0 (mod 4);

0 i = 1, j ≡ 0 (mod 4);

0 j 6≡ 0 (mod 4),

where 0 ≤ t′i ≤ pk − si.
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Proof. Because of Theorem 1.7 (i) the E2-term of the spectral sequence converging
to K∗(BΓ)(p) is given after localization at p by

(
Ei,j

2

)
(p)

= Hi(BΓ;KOj(∗))(p)

∼=





Zri
(p) i even, j ≡ 0 (mod 4);

Zri
(p) ⊕ (Z/p)p

k−si i odd, i ≥ 3, j ≡ 0 (mod 4);

0 i = 1, j ≡ 0 (mod 4);

0 j 6≡ 0 (mod 4).

The rest of the proof is analogous to the proof of Lemma 3.4. �

Lemma 5.3. Let p be an odd prime. For every m ∈ Z, there are isomorphisms of
Z[Z/p]-modules

KOm(BZn
ρ )⊗ Z[1/2] ∼=

⊕

i∈Z

Hi(BZn
ρ )⊗KOm−i(∗)⊗ Z[1/2]

KOm(BZn
ρ )⊗ Z[1/p] ∼=

⊕

i∈Z

Hi(BZn
ρ )⊗KOm−i(∗)⊗ Z[1/p]

Proof. Since KO∗(X)⊗Z[1/2] is a generalized cohomology theory with torsion-free
coefficients, the Chern character and Lemma 3.6 give the first isomorphism.

One proves that there are isomorphisms of abelian groups

KOm(BZn
ρ )
∼=
⊕

i∈Z

Hi(BZn
ρ )⊗KOm−i(∗)

by induction on n using excision and the fact that BZn = S1 × BZn−1. It fol-
lows that the Atiyah-Hirzebruch spectral sequence Ei,j

2 = Hi(BZn;Kj(∗)[1/p])⇒
KOi+j(BZn)[1/p] collapses. This spectral sequence is natural with respect to auto-
morphisms of Zn. Hence we obtain a descending filtration by Z[1/p][Z/p]-modules

KOm(BZn
ρ )[1/p] = F 0,m ⊃ F 1,m−1 ⊃ F 2,m−2 ⊃ · · · ⊃ Fm,0 ⊃ Fm+1,−1 = 0

and exact sequences

0→ F i+1,m−i−1 → F i,m−i π
−→ Hi(Zn

ρ )⊗Km−i(∗)⊗ Z[1/p]→ 0.

It thus suffices to show that these exact sequences split over Z[1/p][Z/p] for all
i. If m − i ≡ 3, 5, 6, 7 (mod 8), this follows from the fact that KOm−i(∗) = 0. If
m−i ≡ 0, 4 (mod 8), then Km−i(∗) ∼= Z andHi(Zn

ρ )⊗K
m−i(∗)⊗Z[1/p] is a finitely

generated Z[1/p]-torsion free module over the ring Z[1/p][Z/p]
∼=
−→ Z[1/p]×Z[1/p][ζ],

hence is projective. Finally, suppose m − i ≡ 1, 2 (mod 8). Since the Atiyah-
Hirzebruch spectral sequence collapses, there is a homomorphism of abelian groups
s : Hi(Zn

ρ )⊗Km−i(∗)⊗ Z[1/p]→ F i,m−i so that π ◦ s = id. Define

s̃ : Hi(Zn
ρ )⊗Km−i(∗)⊗ Z[1/p]→ F i,m−i, x 7→

∑

g∈Z/p

g · s(g−1x).

Then s̃ is a homomorphism of Z[Z/p]-modules and π ◦ s̃ is multiplication by p and
hence is the identity since Km−i(∗) ∼= Z/2. �

Lemma 5.4. Let p be an odd prime.

(i) For every m ∈ Z, there is an isomorphism of abelian groups

KOm(BZn
ρ )

Z/p ∼=
⊕

l∈Z

KOm−l(∗)rl .
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(ii)

Ĥi(Z/p;KOj(BZn
ρ ))
∼=
⊕

l∈Z

Ĥi(Z/p;Hj+4l(Zn
ρ ))
∼=

{
(Z/p)

∑
l∈Z

aj+4l i+ j even,

0 i+j odd.

(iii) All differentials in the Leray-Serre spectral sequence associated to the ex-
tension (1.1) converging to KO∗(BΓ) vanish.

Proof. (i) It suffices to show the isomorphism exists after inverting 2 and after
localizing at 2. Furthermore, if M is a Z[Z/p]-module, then MZ/p ⊗ Z[1/2] ∼=
(M ⊗ Z[1/2])Z/p and MZ/p ⊗ Z(2)

∼= (M ⊗ Z(2))
Z/p since localization is an exact

functor. The assertion then follows from Lemma 5.3 and the definition of the
numbers rl.

(ii) Since Z[1/2] ⊂ Z(p), Lemma 5.3 implies that

KOj(BZn
ρ )⊗ Z(p)

∼=
⊕

l∈Z

Hj+4l(BZn
ρ )⊗ Z(p).

The first isomorphism in assertion (ii) then follows since localization is an exact
functor and the Tate cohomology groups are p-torsion. The second isomorphism
follows from Lemma 1.10 (i).

(iii) First note that the Leray-Serre spectral sequence converges with no lim1-term,
see [31, Theorem 6.5].

It suffices to prove the differentials vanish after inverting p and after localizing
at p. If we invert p, the claim follows from

Ei,j
2 [1/p] = Hi(Z/p;KOj(BZn

ρ ))[1/p] = 0 for i ≥ 1.

If we localize at p, the proof that the differentials vanish is identical to the proof of
Lemma 3.5 (iii). �

Proof of Theorem 5.1. (iv) We first note that Proposition A.4 and Lemma 5.4 (i)
imply that for all m ∈ Z, the kernel and cokernel of the composite

(5.5) KOm(BΓ)→ KOm(BΓ)→ KOm(BZn
ρ )

Z/p ∼= ⊕l∈ZKOm−l(∗)rl

are finitely generated p-groups. This implies that the desired isomorphism holds
after inverting p. It holds at p by Lemma 5.2.
(iii) As in the proof of Theorem 3.3, one shows that the map

ιm : KOm(BΓ)→ KOm(BZn
ρ )

Z/p

is an isomorphism for m odd and an epimorphism for m even.
(v) (vi) Since p is odd, every non-trivial irreducible Z/p-representation is of complex
type. Hence we get from [39, Remark on page 133 after Proposition 2.2] that
KOm

Z/p(∗)
∼= KOm(∗)⊕Km(∗)⊗ IR(Z/p). The Atiyah-Segal Completion Theorem

for KO∗ (see [8]) implies

K̃O
m
(BZ/p) ∼=

{
IR(Z/p)⊗ Zp̂

∼= (Zp̂)
(p−1)/2 m even;

0 otherwise.
(5.6)

The cellular pushout (1.13) yields for m ∈ Z a long exact sequence

(5.7) 0→ KO2m(BΓ)
f
2m

−−→ KO2m(BΓ)
ϕ2m

−−−→
⊕

(P )∈P

K̃O
2m

(BP )

δ2m
−−→ KO2m+1(BΓ)

f
2m+1

−−−−→ KO2m+1(BΓ)→ 0.

Define TO2m+1 to be the kernel of the surjection f
2m+1

. Since f
2m+1

is an isomor-
phism after inverting p by (5.5) and assertion (iii), TO2m+1 is p-torsion. We next
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claim f
2m+1

is split. We only need verify this after localizing at p in which case it
follows since K2m+1(BΓ)⊗Z(p) is free over Z(p) by assertion (iii) and Lemma 5.4 (i).

Finally, the stated filtration of TO2m+1 is a consequence of Lemma 5.2. The com-
pletes the proof of assertion (v). Assertion (vi) is a consequence.

(ii) The proof of this is identical to that of Theorem 3.3 (ii); the only missing part
is to show the epimorphism

ι2m : KO2m(BΓ)→ KO2m(BZn
ρ )

Z/p

is split. At p, this follows since KO2m(BZn
ρ )

Z/p ⊗ Z(p) is free over Z(p). After
inverting p, the splitting is provided by composing the inverse of the composite
(5.5) with the map KO2m(BΓ)[1/p]→ KO2m(BΓ)[1/p]. �

6. KO-homology

In this section we want to compute the real K-homology KO∗ of BΓ and BΓ.
Rationally this can be done using the Chern character of Dold [15]: for every CW -
complex there is a natural isomorphism

⊕

l∈Z

Hm+4l(X)⊗Q
∼=
−→ KOm(X)⊗Q.

In particular we get from Theorem 2.1 (i) and (iv)

KOm(BΓ)⊗Q ∼= Q
∑

l∈Z
rm+4l ;(6.1)

KOm(BΓ)⊗Q ∼= Q
∑

l∈Z rm+4l(6.2)

We are interested in determining the integral structure.

Theorem 6.3 (KO-homology of BΓ and BΓ). Let p be an odd prime and m be
any integer.

(i)

KOm(BΓ) ∼=

{
Z
∑

l∈Z
r2l m even;

Z
∑

l∈Z
r2l+1 ⊕ (Z/p∞)p

k(p−1)/2 m odd;

(ii) The inclusion map Zn → Γ induces an isomorphism

KO2m(BZn
ρ )Z/p

∼=
−→ KO2m(BΓ)

and KO2m(BZn
ρ )Z/p

∼=
⊕

l∈Z KO2m−l(∗)
rl .

(iii) There is a split short exact sequence of abelian groups

0→ (Z/p∞)p
k(p−1)/2 → KO2m+1(BΓ)→ KO2m+1(BΓ)→ 0.

(iv) We have

KO2m(BΓ) ∼=

(⊕

l∈Z

KO2m−l(∗)
rl

)
⊕ TO2m+5

where TO2m+5 is the finite abelian p-group appearing in Theorem 5.1 (v).
(v) We have

KO2m+1(BΓ) ∼=
⊕

l∈Z

KO2m+1−l(∗)
rl .

(vi) The group TO2m+5 is isomorphic to a subgroup of the kernel of
⊕

(P )∈P

KO2m+1(BP )→ KO2m+1(BΓ).
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Theorem 6.4 (Universal Coefficient Theorem for KO-theory). For any CW -
complex X there is a short exact sequence

0→ ExtZ(KOn+3(X),Z)→ KOn(X)→ hom(KOn+4(X),Z)→ 0.

If X is a finite CW -complex, there is a short exact sequence

0→ ExtZ(KOn+5(X),Z)→ KOn(X)→ homZ(KOn+4(X),Z)→ 0.

Proof. A proof for the first short exact sequence can be found in [6] and [45, (3.1)],
the second sequence follows then from [1, Note 9 and 15].

�

Proof of Theorem 6.3. (iv) (v) These assertions follow from Theorem 5.1 (iv)
and (v) and the Universal Coefficient Theorem for KO-theory 6.4.

(ii) There are natural transformations of cohomology theories i∗ : KO∗ → K∗ and
r∗ : K∗ → KO∗, induced by sending a real representation V to its complexification
C⊗RV and a complex representation to its restriction as a real representation. The
composite r∗ ◦ i∗ : KO∗ → KO∗ is multiplication by two. Since the map

K0(BZn
ρ )Z/p

∼=
−→ K0(BΓ).

is bijective by Theorem 4.3 (ii), the map

KO2m(BZn
ρ )Z/p

∼=
−→ KO2m(BΓ)

is bijective after inverting 2. In order to show that it is itself bijective, it remains
to show that it is bijective after inverting p. This follows from Proposition A.4.

Since we are dealing with KO-homology, the Atiyah-Hirzebruch spectral se-
quence converges also for the infinite-dimensional CW -complex BΓ. Because of
the existence of Dold’s Chern character, all its differentials vanish rationally. For
m ∈ Z we have H2m(BΓ) ∼= Zr2m by Theorem 2.1. Hence we get for an odd prime
p since KOm(∗)(p) is Z(p) for m ≡ 0 (mod 4) and 0 otherwise

KO2m(BΓ)(p) ∼= (Z(p))
∑

l∈Z r2m+4l ;

We conclude that

KO2m(BΓ) ∼=
⊕

l∈Z

KO2m−l(∗)
rl ;

holds after localizing at p. It remains to show that it holds after inverting p. This
follows from Proposition A.4 and assertion (iv).

(iii) The Atiyah-Hirzebruch spectral sequence shows that K̃O2m(BZ/p) = 0 for all
m ∈ Z. The methods of [43] together with the Universal Coefficient Theorem for

KO-theory show that K̃O2m+3(BG) is the Pontryagin dual of K̃O
2m

(BG) for any
finite group G. Applying these facts to G = Z/p for an odd prime p, we see

K̃Om(BZ/p) =

{
(Z/p∞)(p−1)/2 m odd;

0 m even.

Thus the long exactKO-homology sequence associated to the cellular pushout (1.13)
reduces to the exact sequence

(6.5) 0→ KO2m(BΓ)
f2m−−→ KO2m(BΓ)

∂2m−−→
⊕

(P )∈P

KO2m−1(BP )

ϕ2m−1
−−−−→ KO2m−1(BΓ)

f2m−1
−−−−→ KO2m−1(BΓ)→ 0.
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Note im ∂2m is a finite abelian p-group, since it is a finitely generated subgroup of
the p-torsion group

⊕

(P )∈P

KO2m−1(BP ) ∼= (Z/p∞)(p−1)pk/2.

Thus im ϕ2m−1
∼= (Z/p∞)(p−1)pk/2 (compare with the proof of Theorem 3.3 (iii)).

It remains to see that f2m−1 splits, which we verify at p and away from p. The

target of f2m−1 is free after localizing at p by assertion (v), so it splits. After

inverting p, the exact sequence 6.5 shows that f2m−1[1/p] is an isomorphism.

(i) This follows from assertions (ii), (iii) and (v).

(vi) This follows from assertions (ii) and (iv) and the long exact sequence (6.5).
This finishes the proof of Theorem 6.3. �

7. Equivariant K-cohomology

In the sequel an equivariant cohomology theory is to be understood in the sense
of [28, Section 1]. Equivariant topological complex K-theory K∗

? is an example
as shown in [28, Example 1.6] based on [31]. This applies also to equivariant
topological real K-theory KO∗

? .
Rationally one obtains

K0
Γ(EΓ)⊗Q ∼= Q(p−1)pk+

∑
l∈Z r2l ;

K1
Γ(EΓ)⊗Q ∼= Q

∑
l∈Z

r2l+1 ,

from [31, Theorem 5.5 and Lemma 5.6] using Theorem 1.7 (iv) and Lemma 1.9.
We want to get an integral computation. Recall that we have computed

∑
l∈Z r2l

and
∑

l∈Z r2l+1 in Lemma 1.22 (ii).

Theorem 7.1 (Equivariant K-cohomology of EΓ).

(i)

Km
Γ (EΓ) ∼=

{
Z(p−1)pk+

∑
l∈Z

r2l m even;

Z
∑

l∈Z
r2l+1 m odd.

(ii) There is an exact sequence

0→ K0(BΓ)→ K0
Γ(EΓ)→

⊕

(P )∈P

IC(P )→ T 1 → 0,

where T 1 is the finite abelian p-group appearing in Theorem 3.3 (v).
(iii) The canonical maps

K1
Γ(EΓ)

∼=
−→ K1(BΓ);

K1(BΓ)
∼=
−→ K1(BZn

ρ )
Z/p,

are isomorphisms.

In the sequel we will often use the following lemma.

Lemma 7.2.

(i) Let H∗
? be an equivariant cohomology theory in the sense of [28, Section 1].

Then there is a long exact sequence

· · · → Hm(BΓ)
indΓ→1−−−−−→ Hm

Γ (EΓ)
ϕm

−−→
⊕

(P )∈P

H
m

P (∗)

→ Hm+1(BΓ)
indΓ→1−−−−−→ Hm+1

Γ (EΓ)→ · · ·
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where H
m

P (∗) is the cokernel of the induction map indP→1 : H
m(∗) →

Hm
P (∗) and the map ϕm is induced by the various inclusions P → Γ.
The map

indΓ→1[1/p] : H
m(BΓ)[1/p]→ Hm

Γ (EΓ)[1/p]

is split injective.
(ii) Let H?

∗ be an equivariant homology theory in the sense of [26, Section 1].
Then there is a long exact sequence

· · · → HΓ
m+1(EΓ)

indΓ→1−−−−−→ Hm+1(BΓ)→
⊕

(P )∈P

H̃P
m(∗)

ϕm
−−→ HΓ

m(EΓ)
indΓ→1−−−−−→ Hm(BΓ)→ · · ·

where H̃P
m(∗) is the kernel of the induction map indP→1 : H

P
m(∗)→ Hm(∗)

and the map ϕm is induced by the various inclusions P → Γ.
The map

indΓ→1[1/p] : H
Γ
m(EΓ)[1/p]→ Hm(BΓ)[1/p]

is split surjective.
Proof. (i) From the cellular Γ-pushout (1.12) we obtain a long exact sequence

(7.3) · · · → Hm
Γ (EΓ)→ Hm

Γ (EΓ)⊕
⊕

(P )∈P

Hm
Γ (Γ/P )

→
⊕

(P )∈P

Hm
Γ (Γ×PEP )→ Hm+1

Γ (EΓ)→ Hm+1
Γ (EΓ)⊕

⊕

(P )∈P

Hm+1
Γ (Γ/P )→ · · · .

From the cellular pushout (1.13) we obtain the long exact sequence

(7.4) · · · → Hm(BΓ)→ Hm(BΓ)⊕
⊕

(P )∈P

Hm(∗)

→
⊕

(P )∈P

Hm(BP )→ Hm+1(BΓ)→ Hm+1(BΓ)⊕
⊕

(P )∈P

Hm+1(∗)→ · · · .

Induction with the group homomorphism Γ → 1 yields a map from the long exact
sequence (7.4) to the long exact sequence (7.3). Recall that the induction homo-
morphism Hm(Γ\X) → Hm

Γ (X) is an isomorphism if Γ acts freely on the proper
Γ-CW -complex X . Therefore the maps

⊕

(P )∈P

Hm(BP )
∼=
−→

⊕

(P )∈P

Hm
Γ (Γ×P EP );

Hm(BΓ)
∼=
−→ Hm

Γ (EΓ),

are bijective. Hence one can splice the long exact sequences (7.3) and (7.4) together
to obtain the desired long exact sequence, after noting the commutative diagram

Hm
Γ (Γ/P ) Hm(∗)

indΓ→1
oo

Hm
P (∗)

indP→Γ
∼=

OO

Hm(∗)

=

OO

indP→1
oo
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We have the following commutative diagram, where the vertical arrow are given
by induction with the group homomorphism Γ→ 1

Hm(BΓ) // //

��

Hm(BZn)

∼=

��

Hm
Γ (EΓ) // Hm

Γ (Γ×Zn EZn)

The upper horizontal arrow is split injective after inverting p by Proposition A.4.
The right vertical arrow is bijective since Γ acts freely on Γ ×Zn EZn. Hence
Hm(BΓ)→ Hm

Γ (EΓ) is injective after inverting p.

(ii) The proof is analogous to the one of assertion (i). This finishes the proof of
Lemma 7.2. �

Proof of Theorem 7.1. Recall that K0
Γ(Γ/P ) ∼= RC(P ) and K1

Γ(Γ/P ) ∼= 0. Hence
we obtain from Lemma 7.2 (i) the long exact sequence

(7.5) 0 → K0(BΓ) → K0
Γ(EΓ) →

⊕

(P )∈P

RC(P ) → K1(BΓ) → K1
Γ(EΓ) → 0,

where RC(P ) is the cokernel of the homomorphism RC(1) → RC(P ) given by
restriction with P → 1. Notice that the composite of the augmentation ideal
IC(P )→ RC(P ) with the projection RC(P )→ RC(P ) is an isomorphism of finitely
generated free abelian groups

IC(P )
∼=
−→ RC(P )(7.6)

and that IC(P ) is isomorphic to Zp−1.

(iii) We have already shown in Theorem 3.3 (iii) that the map K1(BΓ)
∼=
−→

K1(BZn
ρ )

Z/p is bijective and that K1(BΓ) ∼= Z
∑

l∈Z
r2l+1 . Hence it remains to prove

that the composite

K1
Γ(EΓ)→ K1

Γ(EΓ)
∼=
−→ K1(BΓ)

is bijective. We obtain from (3.8) and (7.5) the following commutative diagram
with exact rows

⊕
(P )∈P RC(P ) //

��

K1(BΓ) //

id

��

K1
Γ(EΓ) //

��

0

⊕
(P )∈P K̃0(BP ) // K1(BΓ) // K1(BΓ) // 0

By the five lemma it suffices to show that the map

ker
(
K1(BΓ)→ K1

Γ(EΓ)
)
→ ker

(
K1(BΓ)→ K1(BΓ)

)

is surjective. We conclude from Theorem 3.3 (vi) that the kernel of K1(BΓ) →
K1(BΓ) is the finite abelian p-group T 1 appearing in Theorem 3.3 (v). Hence it
remains to show for every integer l > 0 that the obvious composite

⊕

(P )∈P

RC(P )→
⊕

(P )∈P

K0(BP )→


 ⊕

(P )∈P

K0(BP )



/

pl ·


 ⊕

(P )∈P

K0(BP )




is surjective. By the Atiyah-Segal Completion Theorem the map RC(P )→ K0(BP )
can be identified with the map

id⊕i : Z⊕ I(Z/p)→ Z⊕
(
I(Z/p)⊗ Zp̂

)
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Hence it suffices to show that the composite

Z→ Zp̂ → Zp̂/p
lZp̂

is surjective. This is true since the latter map can be identified with the canonical
epimorphism Z→ Z/pl.

(ii) This follows from Theorem 3.3 (vi), the long exact sequence (7.5), the isomor-
phism (7.6) and assertion (iii).

(i) We have shown K0(BΓ) ∼= Z
∑

l∈Z r2l in Theorem 3.3 (iv). We have I(Z/p) ∼=
Z(p−1)/2. The order of P is pk by Lemma 1.9 (iv). Hence we conclude from asser-
tion (ii)

K0
Γ(EΓ) ∼= Z(p−1)pk+

∑
l∈Z

r2l .

The computation of K1
Γ(EΓ) follows from Theorem 3.3 (iii) and assertion (iii). �

Remark 7.7 (Geometric interpretation of T 1). The exact sequence appearing in
Theorem 7.1 (ii) has the following interpretation in terms of equivariant vector
bundles. Since Γ is a crystallographic group, Γ acts properly on Rn such that this
action reduced to Zn is the free standard action and Rn is a model for EΓ. Hence
the quotient of Zn\Rn is the standard n-torus T n together with a Z/p-action. There
is a bijection

P
∼=
−→ (T n)Z/p

coming from the fact that (T n)P consists of exactly one point for (P ) ∈ P . In
particular (T n)Z/p consists of pk points (see Lemma 1.9 (v).) Hence for any complex
Z/p-vector bundle ξ we get a collection of complex Z/p-representations {ξx | x ∈
(T n)Z/p} satisfying dimC(ξx) = dimC(ξy) = dim(ξ) for x, y ∈ (T n)Z/p. This yields
a map

β : K0
Z/p(T

n)→
⊕

P∈(P )

IC(P ).

sending the class of a Z/p-vector bundle ξ to the collection {[ξx]−dim(ξ) · [C] | x ∈
(T n)Z/p}. Let

α : K0
(
(Z/p)\T n

)
→ K0

Z/p(T
n)

be the homomorphism coming from the pullback construction associated to the
projection T n → (Z/p)\T n. We obtain the exact sequence

0→ K0
(
(Z/p)\T n

) α
−→ K0

Z/p(T
n)

β
−→

⊕

(P )∈P

IC(P )→→ T 10

which can be identified with exact sequence of Theorem 7.1 (ii).
Thus the group T 1 is related to (stable version of) the question when a collection

of Z/p-representations {Vx | x ∈ (T n)Z/p} with dimC(Vx) = dimC(Vy) for x, y ∈

(T n)Z/p can be realized as the fibers of a Z/p-vector bundle ξ over T n at the points
in (T n)Z/p.

Moreover, a Z/p-vector bundle over T n is stably isomorphic to the pullback
of a vector bundle over (Z/p)\T n if and only if for every x ∈ (T n)Z/p the Z/p-
representation ξx has trivial Z/p-action.

8. Equivariant K-homology

In the sequel equivariant homology theory is to be understood in the sense
of [26, Section 1]. Equivariant topological complex K-homology K?

∗ is an example
(see [13], [32, Section 6]). The construction there yields the same for proper G-
CW -complexes as the construction due to Kasparov [20]. It is two-periodic. For
finite groups G the group KG

m(∗) is RC(G) for even m and trivial for odd m.
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We obtain from [27, Theorem 0.7] using Lemma 1.9 an isomorphism

Km(BΓ)

[
1

p

]
⊕
⊕

(P )∈P

Km(∗)⊗ IC(P )

[
1

p

]
∼= KΓ

m(EΓ)

[
1

p

]

and hence from Theorem 4.3

KΓ
0 (EΓ)

[
1

p

]
∼=

(
Z[1/p]

)(p−1)pk+
∑

l
r2l(8.1)

KΓ
1 (EΓ)

[
1

p

]
∼=

(
Z[1/p]

)∑
l
r2l+1 .(8.2)

We want to get an integral computation.

Theorem 8.3 (Equivariant K-homology of EΓ).

(i) We have

KΓ
m(EΓ) ∼=

{
Z(p−1)pk+

∑
l∈Z

r2l m even;

Z
∑

l∈Z
r2l+1 m odd.

(ii) There is a natural isomorphism

KΓ
m(EΓ)

∼=
−→ homZ

(
Km

Γ (EΓ),Z).

(iii) The map KΓ
1 (EΓ)→ K1(BΓ) is an isomorphism.

There is an exact sequence

0→
⊕

(P )∈P

R̃C(P )→ KΓ
0 (EΓ)→ K0(BΓ)→ 0,

where R̃C(P ) is the kernel of the map RC(P ) → RC(1) sending [V ] to
[C⊗CP V ]. It splits after inverting p.

Its proof needs some preparation.

Lemma 8.4. Let G be a finite group. Then there is an isomorphism of RC(G)-
modules

RC(G)
∼=
−→ homZ(RC(G),Z)

which sends [V ] to the homomorphism RC(G)→ Z, [W ] 7→ dimC

(
homCG(V,W )

)
.

Here RC(G) acts on homZ(RC(G);Z) by ([V ] · φ)([W ]) := φ([V ∗] · [W ]).
In particular we get for any RC(G)-module M a natural isomorphism of RC(G)-

modules

ExtiRC(G)(M,RC(G))
∼=
−→ Ext1Z(M,Z) for i ≥ 0.

Proof. See [34, 2.5 and 2.10]. �

Theorem 8.5 (Universal coefficient theorem for equivariant K-theory). Let G be
a finite group and X be a finite G-CW -complex. Then there are for n ∈ Z natural
exact sequences of RC(G)-modules

0→ ExtRC(G)

(
KG

n−1(X), RC(G)
)
→ Kn

G(X)→ homRC(G)

(
KG

n (X), RC(G)
)
→ 0.

and

0→ ExtRC(G)

(
Kn+1

G (X), RC(G)
)
→ KG

n (X)→ homRC(G)

(
Kn

G(X), RC(G)
)
→ 0.

Proof. The first sequence is proved in [10]. The second sequence follows from the
first by equivariant S-duality (see [34], [44]). �
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Proof of Theorem 8.3. (ii) Since Zn acts freely on EΓ, induction with Γ → Z/p
induces isomorphisms

KΓ
n (EΓ)

∼=
−→ KZ/p

n (Zn\EΓ);

Kn
Z/p(Z

n\EΓ)
∼=
−→ Kn

Γ (EΓ).

Since Zn\EΓ is a finite Z/p-CW -complex, we obtain from Lemma 8.4 and Theo-
rem 8.5 the exact sequence of RC(Z/p)-modules

0→ Ext1Z
(
Kn+1

Z/p (Zn\EΓ),Z
)
→ KZ/p

n (Zn\EΓ)→ homZ

(
Kn

Z/p(Z
n\EΓ),Z)→ 0.

(Another construction of the sequence above will be given in [19].) Hence we get
an exact sequence of RC(Z/p)-modules (see also [34, Proposition 2.8])

0→ Ext1Z
(
Kn+1

Γ (EΓ),Z
)
→ KΓ

n (EΓ)→ homZ

(
Kn

Γ(EΓ),Z)→ 0.

Since Kn+1
Γ (EΓ) is a finitely generated free abelian group for all n ∈ Z by Theo-

rem 7.1, we obtain for n ∈ Z an isomorphism of RC(Z/p)-modules

KΓ
n(EΓ)

∼=
−→ homZ

(
Kn

Γ (EΓ),Z)

(i) Apply Theorem 7.1 (i) and assertion (ii) to get the concrete identification of
KΓ

n (EΓ).

(iii) From Lemma 7.2 (ii) we obtain a long exact sequence

(8.6) 0 → KΓ
1 (EΓ) → K1(BΓ) →

⊕

(P )∈P

K̃
Z/p
0 (∗) → KΓ

0 (EΓ) → K0(BΓ) → 0.

where K̃
Z/p
0 (∗) is the kernel of the map K

Z/p
0 (∗) → K0(∗) coming from induction

with Z/p → 1. Since KΓ
1 (EΓ) and K1(BΓ) are finitely generated free abelian

groups of the same rank by assertion (i) and Theorem 4.3 (v) and
⊕

(P )∈P K̃
Z/p
0 (∗)

is torsion free, the map KΓ
1 (EΓ) → K1(BΓ) is bijective and we get a short exact

sequence

0→
⊕

(P )∈P

K̃
Z/p
0 (∗)→ KΓ

0 (EΓ)→ K0(BΓ)→ 0.

�

9. Equivariant KO-cohomology

Recall that equivariant topological real KO-theory KO∗
? is an equivariant co-

homology theory in the sense of [28, Section 1]. It is 8-periodic. Recall also that
equivariant topological real K-homology KO?

∗ is an equivariant homology theory
in the sense of [26, Section 1]. It is 8-periodic.

We first give some information about KOG
m(∗) and KOm

G (∗) for finite G. We
have KOG

m(∗) = KO−m
G (∗) If G is a finite group, then we get for m ∈ Z

KO−m
G (∗) ∼= KOG

m(∗) ∼= Km(RG)

where Km(RG) is the topological K-theory of the real group C∗-algebra RG. Let
{Vi | i = 0, 1, 2, . . . , r} be a complete set of representatives for the RG-isomorphism
classes of irreducible real G-representations. By Schur’s Lemma the endomorphism
ring Di = endRG(Vi) is a skewfield over R and hence isomorphic to R, C or H.
There are positive integers ki for i ∈ {0, 1, . . . , r} such that we obtain a splitting

RG ∼=

r∏

i=0

Mki
(Di).
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Since topological K-theory is compatible with products, by Morita equivalence we
obtain for m ∈ Z an isomorphism

Km(RG) ∼=

r∏

i=1

Km(Di)(9.1)

The realK-theory of the building blocks are given byKOm(R) = KOm(∗),KOm(C)
= Km(∗), and KOm(H) = KOm+4(∗). If G = Z/p for an odd prime p and we take
for V0 the trivial real Z/p-representation R, then r = (p−1)/2, D0 = R and Di = C
for i ∈ {1, 2, . . . (p− 1)/2}. This implies

KOZ/p
m (∗) ∼= KOm(∗)⊕Km(∗)(p−1)/2.(9.2)

KOm
Z/p(∗)

∼= KO−m(∗)⊕K−m(∗)(p−1)/2.(9.3)

Let K̃O
Z/p

m (∗) be the kernel of the map KO
Z/p
m (∗) → KOm(∗) given by induction

with Z/p → 1. This corresponds under the isomorphism (9.2) to the obvious pro-

jection of KOm(∗) ⊕ Km(∗)(p−1)/2 onto KOm(∗). Let KO
m

Z/p(∗) be the cokernel

of the map KOm(∗) → KOm
Z/p(∗) given by induction with Z/p → 1. This cor-

responds under the isomorphism (9.3) to the obvious inclusion of KO−m(∗) into
KO−m(∗)⊕KO−m(∗)(p−1)/2. Hence we get

K̃O
Z/p

m (∗) ∼= Km(∗)(p−1)/2;(9.4)

KO
m

Z/p(∗)
∼= K−m(∗)(p−1)/2;(9.5)

This implies

K̃O
Z/p

m (∗) ∼= KO
m

Z/p(∗)
∼=

{
Z(p−1)/2 m even;

0 m odd.
(9.6)

We conclude from [28, Theorem 5.2] using Lemma 1.9 (i) for m ∈ Z

KO2m
Γ (EΓ)⊗Q ∼= Qpk(p−1)/2+

∑
l∈Z

r2m+4l ;

KO2m+1
Γ (EΓ)⊗Q ∼= Q

∑
l∈Z

r2m+1+4l .

Again we seek an integral computation.

Theorem 9.7 (Equivariant KO-cohomology). Let p be an odd prime and let m be
any integer.

(i)

KOm
Γ (EΓ) ∼=

{
Zpk(p−1)/2 ⊕

⊕
i∈Z KOm−i(∗)ri m even⊕

i∈Z KOm−i(∗)ri m odd.

(ii) If TO2m+1 is the finite abelian p-group appearing in Theorem 5.1 (v), then
there is an exact sequence

0→ KO2m(BΓ)→ KO2m
Γ (EΓ)→

⊕

(P )∈P

KO
2m

Z/p(∗)→ TO2m+1 → 0.

(iii) The canonical maps

KO2m+1
Γ (EΓ)

∼=
−→ KO2m+1(BΓ);

KO2m+1(BΓ)
∼=
−→ KO2m+1(BZn

ρ )
Z/p,

are isomorphisms.
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Proof. (iii) Lemma 7.2 (i) together with (9.6) implies that there is a long exact
sequence

(9.8) 0→ KO2m(BΓ)→ KO2m
Γ (EΓ)→

⊕

(P )∈P

KO
2m

Z/p(∗)

→ KO2m+1(BΓ)→ KO2m+1
Γ (EΓ)→ 0,

and that the kernel of the epimorphism KO2m+1(BΓ) → KO2m+1
Γ (EΓ) is a finite

abelian p-group.
For m ∈ Z the composite

KO2m+1(BΓ)
α
−→ KO2m+1

Γ (EΓ)
β
−→ KO2m+1(BΓ)

is surjective and has a finite abelian p-group as kernel by Theorem 5.1 (vi). Hence
the map β is surjective for all m ∈ Z. Since α is surjective by (9.8), the map
ker (β ◦ α) → ker (β) is surjective and hence the kernel of β is a finite abelian
p-group.

The following diagram commutes

KO2m+1
Γ (EΓ) //

��

2·id
,,

K2m+1
Γ (EΓ) //

∼=

��

KO2m+1
Γ (EΓ)

��

KO2m+1(BΓ) //

2·id

22
K2m+1(BΓ) // KO2m+1(BΓ)

where the left horizontal maps are given by induction with R → C, the right
horizontal maps by restriction with R→ C and the middle vertical arrow is an iso-
morphism by Theorem 7.1. Hence the kernel of the epimorphism KO2m+1

Γ (EΓ)→
KO2m+1(BΓ) is an abelian group of exponent 2. We have already shown that its
kernel is a finite abelian p-group. Since p is odd, we conclude that

KO2m+1
Γ (EΓ)

∼=
−→ KO2m+1(BΓ)

is an isomorphism.

The bijectivity of KO2m+1(BΓ)
∼=
−→ KO2m+1(BZn

ρ )
Z/p has already been proved

in Theorem 5.1 (iii).

(i) Since kernel of the epimorphism KO2m+1(BΓ) → KO2m+1
Γ (EΓ) is a finite

abelian p-group and
⊕

(P )∈P KO
2m

Z/p(∗) is isomorphic to Zpk(p−1)/2 by Lemma 1.9 (iv)

and by (9.6), we conclude from the exact sequence (9.8) that

KO2m
Γ (EΓ) ∼= KO2m(BΓ)⊕ Zpk(p−1)/2.

Since we have already computed KO2m(BΓ) and KO2m+1(BΓ) in Theorem 5.1,
assertion (i) follows using assertion (iii).

(ii) The kernel of the epimorphism KO2m+1(BΓ) → KO2m+1(BΓ) is isomorphic

to TO2m+1 by Theorem 5.1 (v) and (vi). Since KO2m+1
Γ (EΓ)

∼=
−→ KO2m+1(BΓ) is

bijective by assertion (iii), the claim follows from the long exact sequence (9.8). �

10. Equivariant KO-homology

We obtain from [27, Theorem 0.7] using Lemma 1.9 isomorphisms

KOΓ
2m(EΓ)⊗Q ∼= Qpk(p−1)/2+

∑
l∈Z r4l+2m ;

KOΓ
2m+1(EΓ)⊗Q ∼= Q

∑
l∈Z

r4l+2m+1 .
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We want to get an integral computation.

Theorem 10.1 (Equivariant KO-homology). Let p be an odd prime and m be any
integer.

(i)

KOΓ
m(EΓ) ∼=

{
Zpk(p−1)/2 ⊕ (

⊕n
i=0 KOm−i(∗)

ri) m even;⊕n
i=0 KOm−i(∗)

ri . m odd.

(ii) For m ∈ Z the map KOΓ
2m+1(EΓ)

∼=
−→ KO2m+1(BΓ) is an isomorphism.

(iii) There is a short exact sequence

0→
⊕

(P )∈P K̃O
Z/p

2m (∗)→ KOΓ
2m(EΓ)→ KO2m(BΓ)→ 0,

where K̃O
Z/p

2m (∗) is the kernel of the map KO
Z/p
2m (∗) → KO2m(∗) coming

from induction with Z/p→ 1. It splits after inverting p.

Proof. Lemma 7.2 (ii) implies that there is an long exact sequence

(10.2) 0→ KOΓ
2m+1(EΓ)→ KO2m+1(BΓ)→

⊕

(P )∈P

K̃O
Z/p

2m (∗)

→ KOΓ
2m(EΓ)→ KO2m(BΓ)→ 0.

and that the map
KOΓ

i (EΓ)[1/p]→ KOi(BΓ)[1/p]

is split surjective for i ∈ Z. In particular the cokernel ofKOΓ
2m+1(EΓ)→ KO2m+1(BΓ)

is a finite abelian p-group. Since K̃O
Z/p

2m (∗) is a finitely generated free abelian group
by (9.6), the long exact sequence (10.2) reduces to an isomorphism

KOΓ
2m+1(EΓ)

∼=
−→ KO2m+1(BΓ)

and a short exact sequence

0→
⊕

(P )∈P K̃O
Z/p

2m (∗)→ KOΓ
2m(EΓ)→ KO2m(BΓ)→ 0,(10.3)

which splits after inverting p. We have proven assertions (ii) and (iii).
Since the composite

KOΓ
i (EΓ)→ KΓ

i (EΓ)→ KOΓ
i (EΓ)

is multiplication with 2 and KΓ
i (EΓ) is a finitely generated free abelian group by

Theorem 8.3, the torsion subgroup of the finitely generated abelian groupKOΓ
i (EΓ)

is annihilated by 2 for i ∈ Z. Since by Theorem 6.3 (iv)
⊕

(P )∈P

K̃O
Z/p

2m (∗) ∼= Zpk(p−1)/2;

KO2m(BΓ) ∼=

(
n⊕

i=0

KO2m−i(∗)
ri

)
⊕ TO2m+5

for a finite abelian p-group TO2m+5 and the torsion in
⊕n

i=0 KOm−i(∗)
ri is an-

nihilated by multiplication with 2, we get from (10.3) an isomorphism of abelian
groups

KOΓ
2m(EΓ) ∼= Zpk(p−1)/2 ⊕

(
n⊕

i=0

KO2m−i(∗)
ri

)
.

This is the even case of assertion (i). The odd case of assertion (i) follows from
assertion (ii) and Theorem 6.3 (v). �
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11. Topological K-theory of the group C∗-algebra

In this section we compute the topological K-theory Kn(C
∗
r (Γ)) of the complex

reduced group C∗-algebra C∗
r (Γ) and the topological K-theory KOn(C

∗
r (Γ;R)) :=

Kn(C
∗
r (Γ;R)) of the real reduced group C∗-algebra C∗

r (Γ;R).
The Baum-Connes Conjecture (see [9, Conjecture 3.15 on page 254]) predicts for

a group G that the complex and the real assembly maps

KG
n (EG)

∼=
−→ Kn(C

∗
r (G));(11.1)

KOG
n (EG)

∼=
−→ KOn(C

∗
r (G;R)),(11.2)

are bijective for n ∈ Z. It has been proved for G = Γ (and many more groups)
in [18].

11.1. The complex case. We begin with the complex case.

Proof of Theorem 0.3. Because of the isomorphism (11.1) all claims follow from
Lemma 1.9 (i), Lemma 1.22 (ii) and Theorem 8.3 except the statement that

K1(C
∗
r (Γ))

∼=
−→ K1(C

∗
r (Z

n
ρ ))

Z/p

is bijective. Induction with ι : Zn → Γ yields a homomorphism

K1(C
∗
r (Z

n))→ K1(C
∗
r (Γ))

and restriction with ι yields a homomorphism

K1(C
∗
r (Γ))→ K1(C

∗
r (Z

n)).

Since an inner automorphism of Γ induces the identity on K1(C
∗
r (Γ)), these homo-

morphisms induce homomorphisms

ι∗ : K1(C
∗
r (Z

n
ρ )Z/p → K1(C

∗
r (Γ));

ι∗ : K1(C
∗
r (Γ)) → K1(C

∗
r (Z

n
ρ ))

Z/p.

By the double coset formula the composite ι∗ ◦ ι∗ is the norm map

N : K1(C
∗
r (Z

n
ρ ))Z/p → K1(C

∗
r (Z

n
ρ ))

Z/p.

The cokernel of the norm map is Ĥ0(Z/p;K1(C
∗
r (Z

n
ρ )). Note

Ĥ0(Z/p;K1(C
∗
r (Z

n
ρ ))
∼= Ĥ0(Z/p;K1(BZn

ρ )) (the BC Conjecture for Zn)

∼= Ĥ0(Z/p;K1(BZn
ρ )

∗) (the UCT for K-theory 4.4)

∼= Ĥ−1(Z/p;K1(BZn
ρ )) (Lemma A.1 proven below)

= 0 (Lemma 3.5 (ii)).

This implies that the norm map N and hence ι∗ : K1(C
∗
r (Γ))

∼=
−→ K1(C

∗
r (Z

n
ρ ))

Z/p

are surjective. Since source and target of ι∗ are finitely generated free abelian groups
of the same rank by assertion (i) and Lemma 3.5 (i), ι∗ is an isomorphism. �

11.2. The real case. Next we treat the real case.

Proof of Theorem 0.6. Because of the isomorphisms (9.6) and (11.2) all claims fol-
low from Theorem 10.1 except the claim that

KO2m+1(C
∗
r (Γ;R))

∼=
−→ KO2m+1(C

∗
r (Z

n
ρ ;R))

Z/p

is bijective. As we have natural transformations of cohomology theories i∗ : KO∗ →
K∗ and r∗ : K∗ → KO∗ with r∗◦i∗ = 2·id, Theorem 0.3 (iii) implies that the map is
bijective after inverting 2. Since p is odd, it remains to show that it is bijective after

inverting p. Because of the bijectivity of KO2m+1(C
∗
r (Γ;R))

∼=
−→ KO2m+1(BΓ), the

fact that KO2m+1(BZn
ρ )Z/p → KO2m+1(BΓ) is bijective after inverting p (use
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Proposition A.4), the fact that norm map is always bijective after inverting p, and
the the isomorphism (11.2) for Zn, the claim holds. �

12. The group Γ satisfies the (unstable) Gromov-Lawson-Rosenberg
Conjecture

In this section we give the proof of Theorem 0.7, after first giving some back-
ground.

12.1. The Gromov-Lawson-Rosenberg Conjecture. For a closed, spin mani-
fold M of dimension m with fundamental group G, one can define an invariant

α(M) ∈ KOm(C∗
r (G);R),(12.1)

which vanishes ifM admits a metric of positive scalar curvature [36]. The (unstable)
Gromov-Lawson-Rosenberg Conjecture for a group G states that if α(M) = 0 and
dimM ≥ 5, then M admits a metric of positive scalar curvature. The (unstable)
Gromov-Lawson-Rosenberg Conjecture is known to be valid for some fundamental
groups, for example, the trivial group [40], some finite groups [22], some torsion-free
infinite groups, for example, whenG is a fundamental group of a complete Riemann-
ian manifold of non-positive sectional curvature [36], and some infinite groups with
torsion, for example, cocompact Fuchsian groups [14], but not in general – there is
a counterexample when G = Z4 × Z/3 due to Schick [38].

There is a weaker version of the conjecture which may be valid for all groups. Let

B8 be a “Bott manifold,” a simply-connected spin 8-manifold with Â-genus equal to
one. We say that a manifold M stably admits a metric of positive scalar curvature
if M × (B8)j admits a metric of positive scalar curvature for some j ≥ 0. The
stable Gromov-Lawson-Rosenberg Conjecture formulated by Rosenberg-Stolz [37]
states that for a closed spin manifold M with fundamental group G, then M stably
admits a metric of positive scalar curvature if and only if α(M) = 0. Since the
Baum-Connes Conjecture implies the stable Gromov-Lawson-RosenbergConjecture
(see [41, Theorem 3.10] for an outline of the proof) and Γ satisfies the Baum-Connes
Conjecture, we know already that Γ satisfies the stable Gromov-Lawson-Rosenberg
Conjecture.

There are two definitions of the invariant α, one topological and one analytic.
Let KO be the periodic spectrum underlying real K-theory, and let p : ko → KO

be the 0-connective cover, that is, it induces an isomorphism on πi for i ≥ 0 and
πi(ko) = 0 for i negative. Then the topological definition of α(M) is the image of
the class [fM : M → BG] where fM induces the identity on the fundamental group
under the composite

ΩSpin
m (BG)

D
−→ kom(BG)

pBG
−−−→ KOm(BG)

A
−→ KOm(C∗

r (G))(12.2)

where D is the ko-orientation of spin bordism and A is the assembly map. The
analytic definition of α(M) is the index of the Dirac operator. The map D maps the
bordism class to the symbol of the Dirac operator. The Atiyah-Singer index theorem
identifies the topological and analytic definitions. Furthermore if M has positive
scalar curvature, then the Bochner-Lichnerowicz-Weitzenböck formula shows that
the index is zero so that α(M) = 0.

Finally, we mention one more result in our quick review, and that is the gen-
eralization of the Gromov-Lawson surgery theorem of due to Jung and Stolz [37,
3.7].

Proposition 12.3. Let M be a connected closed spin manifold with fundamental
group G and dimension m ≥ 5. Let [f : N → BG] ∈ ΩSpin

m (BG). (Note that N
need not have fundamental group G.) If D[fM : M → BG] = D[f : N → BG] ∈
kom(BG) and N admits a metric of positive scalar curvature, then so does M .
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12.2. The proof of Theorem 0.7. The proof of Theorem 0.7 needs some prepa-
ration.

Lemma 12.4. Let p be an odd prime. Then the map

D̃ : Ω̃Spin
m (BZ/p)→ k̃om(BZ/p)

is surjective for all m ≥ 0.

Proof. If M is a Z[Z/p]-module, then Hi(Z/p;M)[1/p] = 0 for i ≥ 1 and hence the
canonical maps

Hi(BZ/p;M)
∼=
−→ Hi(BZ/p;M)(p)

∼=
−→ Hi(BZ/p;M(p))

are bijective for i ≥ 1. We conclude from the Atiyah-Hirzebruch spectral sequences
that the vertical maps in the commutative diagram

Ω̃Spin
m (BZ/p)

D̃
//

∼=

��

k̃om(BZ/p)

∼=

��

Ω̃Spin
m (BZ/p)(p)

D̃(p)
// k̃om(BZ/p)(p)

are bijective for m ≥ 0. Hence it suffices to prove the surjectivity of the lower

horizontal map. Since p is odd, ΩSpin
j (∗)(p) is zero for j 6≡ 0 (mod 4) and ΩSpin

j (∗)(p)
is a finitely generated free Z(p)-module for j ≡ 0 (mod 4) (see [7]). The same is
true for koj(∗)(p) by Bott periodicity. Hence there are no differentials in Atiyah-

Hirzebruch spectral sequences converging to Ω̃Spin
i+j (BZ/p)(p) and k̃oi+j(BZ/p)(p)

and we get for the E∞-terms

E∞
i,j

(
Ω̃Spin

i+j (BZ/p)(p)

)
∼= H̃i(Z/p)⊗ ΩSpin

j (∗)(p);

E∞
i,j

(
k̃oi+j(BZ/p)(p)

)
∼= H̃i(Z/p)⊗ koj(∗)(p).

It suffices to show that the map on the E∞-terms is surjective for all i, j. Hence it
is enough to show that the map

D(p) : Ω
Spin
j (∗)(p) → koj(∗)(p)

is surjective for all j. Since ko∗(∗)(p) is a polynomial algebra on a single generator
in dimension 4, it suffices to prove D(p) is onto when j = 4. In this case both

ΩSpin
4 (∗) and ko4(∗) are infinite cyclic with the former generated by a spin manifold

of signature 16, for example the Kummer surface K. The Â-genus of K is 2 and

the index of the real Dirac operator is Â(K)/2 (see [23, Theorem II.7.10]). Hence

D : ΩSpin
4 (∗)→ ko4(∗) is an isomorphism. �

Theorem 12.5 (ko-homology). Let p be an odd prime and let m be any integer.

(i)

kom(BΓ) ∼=

{⊕n
i=0 kom−i(∗)

ri m even;

tom(BΓ)⊕ (
⊕n

i=0 kom−i(∗)
ri) m odd.

where tom(BΓ) is a finite abelian p-group defined for m odd.
(ii) The inclusion map Zn → Γ induces an isomorphism

ko2m(BZn
ρ )Z/p

∼=
−→ ko2m(BΓ)

and ko2m(BZn
ρ )Z/p

∼=
⊕n

i=0 ko2m−i(∗)
ri .
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(iii) There is a long exact sequence

0→ ko2m(BΓ)
f2m−−→ ko2m(BΓ)

∂2m−−→
⊕

(P )∈P

k̃o2m−1(BP )

ϕ2m−1
−−−−→ ko2m−1(BΓ)

f2m−1
−−−−→ ko2m−1(BΓ)→ 0.

Hence kom(BΓ)[1/p]→ kom(BΓ)[1/p] is an isomorphism for m ∈ Z.
(iv)

ko2m+1(BΓ) ∼=

2m+1⊕

i=0

ko2m+1−i(∗)
ri .

(v) Let to2m(BΓ) = im ∂2m and to2m−1(BΓ) = imϕ2m−1. These are finite
abelian p-groups. There is an exact sequence

0→ ko2m(BΓ)→ ko2m(BΓ)→ to2m(BΓ)→ 0

and an isomorphism

ko2m+1(BΓ) ∼= to2m+1(BΓ)⊕

n⊕

i=0

ko2m+1−i(∗)
ri .

Proof. (iii) The Atiyah-Hirzebruch spectral sequence implies that that k̃o2m(BZ/p)

vanishes and that k̃o2m+1(BZ/p) is a finite abelian p-group. Now the claim follows
from the long exact sequence associated to the cellular pushout (1.13).

(ii) The proof is similar to that of Theorem 2.1 (ii). We analyze the Leray-Serre
spectral sequence associated to the extension (1.1)

E2
i,j = Hi(Z/p; koj(BZn

ρ ))⇒ koi+j(BΓ).

One can show analogously to the proof of Lemma 5.3 that there are isomorphisms
of Z[Z/p]-modules

koj(BZn
ρ )⊗ Z[1/2] ∼=

n⊕

l=0

Hl(Z
n
ρ )⊗ koj−l(∗)⊗ Z[1/2](12.6)

koj(BZn
ρ )⊗ Z(2)

∼=

n⊕

l=0

Hl(Z
n
ρ )⊗ koj−l(∗)⊗ Z(2).(12.7)

Since kom(∗)(p) is Z(p) when m is divisible by four and vanishes otherwise,

Ĥi+1(Z/p; koj(BZn
ρ ))
∼=
⊕

ℓ

Ĥi+1(Z/p;Hj−4ℓ(Z
n
ρ )).

This fact, the Universal Coefficient Theorem, Lemma A.1, and Lemma 1.10 (i)

imply Ĥi+1(Z/p; koj(BZn
ρ )) = 0 when i+ j is even.

Thus E2
0,2m = ko2m(BZn

ρ )Z/p maps injectively to ko2m(BZn
ρ )

Z/p and hence is

p-torsion-free, and for i > 0, E2
i,j has exponent p and vanishes if i+ j is even. Thus

ko2m(BZn
ρ )Z/p

∼= E2
0,2m = E∞

0,2m

∼=
−→ ko2m(BΓ).

By(12.6), (12.7) and Theorem 2.1 (i), (ii) ,

ko2m(BZn
ρ )Z/p

∼=

n⊕

l=0

Hl(Z
n
ρ )Z/p ⊗ ko2m−l(∗) ∼=

n⊕

l=0

ko2m−l(∗)
rl

(iv) We will compute the group ko2m+1(BΓ) after localizing at p and after inverting
p. We will begin with localizing at p. We use the Atiyah-Hirzebruch spectral
sequence

E2
i,j = Hi(BΓ; koj(∗)(p))⇒ koi+j(BΓ)(p)
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for the generalized homology theory kom(−)(p). Note also that when i is odd,

Theorem 2.1 (iv) states that Hi(BΓ) ∼= Zri . In particular, when i + j is odd, E2
i,j

is finitely generated free over Z(p). Since the differentials in the Atiyah-Hirzebruch

spectral sequence are rationally trivial, E∞
i,j ⊂ E2

i,j and has finite p-power index
whenever i+ j is odd. Hence

ko2m+1(BΓ)(p) ∼=
⊕

i

E∞
i,2m+1−i

∼=
⊕

i

(ko2m+1−i(∗)
ri)(p) .

Now we invert p. For any integer j ≥ 0,

koj(BΓ)[1/p]
∼=
←− koj(BZn

ρ )Z/p[1/p] (Proposition A.4)

∼= ⊕iHi(BZn
ρ )Z/p ⊗ koj−i(∗)[1/p] (isomorphisms (12.6), (12.7))

∼= ⊕i (koj−i(∗)
ri) [1/p] Theorem 2.1 (i), (ii)

(v) The group to2m(BΓ) is a subgroup and the group to2m−1(BΓ) is a quotient

group of the finite abelian p-group k̃o2m(BZ/p), hence are finite abelian p-groups
themselves. To complete the proof of assertion (v), by assertions (iii) and (iv) we
only need prove that f2m+1 is a split surjection. This follows since ko2m+1(BΓ)(p)
is free over Z(p) and f2m+1 ⊗ idZ[1/p] is an isomorphism.

(i) This follows from assertions (ii) and (v). �

Now we are ready to prove Theorem 0.7.

Proof of Theorem 0.7. Let M be a closed m-dimensional manifold with m ≥ 5 and
fundamental group π1(M) ∼= Γ. Suppose that α(M) = 0. We have to show that M
carries a metric with positive scalar curvature.

The following commutative diagram with exact rows is key to the proof.

⊕
(P )∈P k̃om(BP ) // kom(BΓ)

A◦pBΓ

��

β
// kom(BΓ)

pBΓ

��

KOm(C∗
r (Γ;R)) // KOm(BΓ)

where the bottom map is the composite of the inverse of the Baum-Connes map
KOΓ

m(EΓ) → KOΓ
m(C∗

r (Γ;R)) (which is an isomorphism by [18]) and the map
KOΓ

m(EΓ)→ KOm(BΓ) coming from induction with Γ→ 1. The top row is exact
by Theorem 12.5 (iii). The square commutes since the map pBΓ ◦ β equals the
composite

kom(BΓ)→ KOm(BΓ) = KOΓ
m(EΓ)→ KOΓ

m(EΓ)→ KOm(BΓ).

Since by assumption α(M) = 0, the image of D[fM : M → BΓ] ∈ kom(BΓ)
under the composite pBΓ ◦ β is zero, where fM : M → BΓ is the classifying map of
M associated to π1(M) ∼= Γ.

Next we show that the map pBΓ[1/p] is injective. Because of Proposition A.4,
it suffices to show kom(BZn

ρ )Z/p[1/p] → KOm(BZn
ρ )Z/p[1/p] is injective. Since

p divides the order of Z/p it suffices to show that kom(BZn) → KOm(BZn) is
injective. This follows from the following commutative square

⊕n
l=0

(
kom−l(∗)

)(nl)
∼=

//

⊕
n
l=0

(
p∗

)(nl)
��

kom(BZn)

pBZn

��⊕n
l=0

(
KOm−l(∗)

)(nl)
∼=

// KOm(BZn)
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since p∗ : kom(∗) → KOm(∗) is injective for all m ∈ Z. This finishes the proof
that the kernel of the map pBΓ consists of p-torsion. Hence β(D[fM : M → BΓ]) ∈
kom(BΓ) is p-torsion.

Now we can finish the proof in the case that m is even. Then the map β is
injective and its domain is a finitely generated abelian group without p-torsion by
Theorem 12.5 (ii) and (iii). Hence D[fM : M → BΓ] ∈ kom(BΓ) is trivial and
we conclude from Proposition 12.3 that M carries a metric with positive scalar
curvature.

Hence we will now assume that m is odd. Then the target of β is a finitely
generated abelian group without p-torsion by Theorem 12.5 (iv). Hence the image of
D[fM : M → BΓ] ∈ kom(BΓ) under β is zero. We conclude from Theorem 12.5 (iii)
that there is an element

(xP )(P )∈P ∈
⊕

(P )∈P

k̃om(BP )

which is mapped under
⊕

(P )∈P k̃om(BP )→ kom(BΓ) to D[fM : M → BΓ]. Com-

bining this with Lemma 12.4 yields elements [NP → BP ] ∈ Ω̃Spin
m (BZ/p) such that

the image of [NP → BP ](P )∈P under the composite
⊕

(P )∈P

Ω̃Spin
m (BP )→ ΩSpin

m (BΓ)
D
−→ kom(BΓ)

agrees with D[fM : M → BΓ]. By surgery we can arrange that the map NP →
BP is 2-connected and in particular a classifying map for NP . Since m is odd,

K̃Om(C∗
r (P ;R)) = 0 (see the beginning of Section 9). Hence since the Gromov-

Lawson-Rosenberg conjecture holds for manifolds whose fundamental group is odd-
order cyclic [22], each NP admits a metric of positive scalar curvature. Recall

D[fM : M → BΓ] = D[
(
∐P∈(P)NP

)
→
(
∐P∈(P)BP

)
→ BΓ] ∈ kom(BΓ).

Hence, by Proposition 12.3, M admits a metric of positive scalar curvature.
Now we just need to show that the last sentence of Theorem 0.7 is valid.
Let M be a closed spin manifold with odd dimension m ≥ 5 and fundamental

group Γ. Suppose that its p-cover M̂ associated with the subgroup ι : Zn → Γ

admits a metric of positive scalar curvature. Then 0 = α(M̂ ) = ι∗α(M) ∈
KOm(C∗

r (Z
n;R)). Hence by Theorem 0.6 (iii), α(M) = 0. Hence by our argu-

ment above, M admits a metric of positive scalar curvature. �

Appendix A. Tate cohomology, duality, and transfers

Here we collect facts concerning duality in Tate cohomology, transfers in general-
ized (co)-homology theories, and edge homomorphisms in the Leray-Serre spectral
sequence.

Recall that Ĥ∗(G;M) denotes the Tate cohomology (see [11, VI.4]) of a finite

group G with coefficients in a Z[G]-module M , that Ĥi(G;M) = Hi(G;M) for

i ≥ 1, that Ĥi(G;M) = H−i−1(G;M) for i ≤ −2, and that there is an exact
sequence

0→ Ĥ−1(G;M)→MG
N
−→MG → Ĥ0(G;M)→ 0.

Here MG are the invariants of M , MG = M⊗ZGZ = M/〈gm−m〉g∈G,m∈M are the
coinvariants ofM , and N [m] =

∑
g∈G gm is the norm map. Note MG = H0(G;M)

and MG = H0(G;M).
For a abelian group M , define the dual M∗ = homZ(M,Z) and the torsion dual

M∧ = homZ(M,Q/Z). Note that if M is a finitely generated free abelian group
(respectively a finite abelian group) then there is a non-canonical isomorphism
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M ∼= M∗ (respectively M ∼= M∧). If M is a left ZG-module, give M∗ and M∧

the structure of left ZG-modules by defining (gϕ)(m) := ϕ(g−1m) for g ∈ G and
m ∈M .

Lemma A.1 (Tate duality). Let G be a finite group and M be a finitely generated
ZG-module which contains no p-torsion for all primes p dividing the order of G.
Then for all integers i there is an isomorphism of abelian groups

Ĥi(G;M) ∼= Ĥ−i(G;M∗).

Hence for all integers i > 0,

Hi+1(G;M) ∼= Hi(G;M∗).

Proof. The Tate cohomology group Ĥi(G;M) is a finitely generated group of expo-
nent |G|, hence is a finite abelian group. Thus there is a non-canonical isomorphism

of abelian groups Ĥi(G;M) ∼= Ĥi(G;M)∧. Duality in Tate cohomology shows

Ĥi(G;M)∧ ∼= Ĥ−i−1(G;M∧)

(see [11, VI.7.3]; duality holds for any ZG-module). Let FM be M modulo its
torsion subgroup. Then (FM)∗ → M∗ and (FM)∧ ⊗ Z(|G|) → M∧ ⊗ Z(|G|) are
isomorphisms and

0→ homZ(FM,Z)→ homZ(FM,Q)→ homZ(FM,Q/Z)→ 0

is a short exact sequence. Thus

Ĥ−i−1(G;M∧) ∼= Ĥ−i−1(G; (FM)∧) ∼= Ĥ−i(G; (FM)∗) ∼= Ĥ−i(G;M∗)

as desired. �

Remark A.2. Here is a related remark. Let G = 〈g〉 be a finite cyclic group and
M be a ZG-module. Then by dualizing the exact sequence

M
g−1
−−→M →MG → 0

one obtains the exact sequence

0→ (MG)
∗ →M∗ g−1−1

−−−−→M∗.

Hence (MG)
∗ ∼= (M∗)G.

Let π : E → B be a regular G-cover of CW -complexes. Let H∗ a generalized
homology theory andH∗ a generalized cohomology theory. There are transfer maps
trf∗ and trf∗ switching the domain and range of π∗ and π∗. Their definition is given
in [2, Chapter 4] when B is finite and in [25, Chapter IV, 3] in general. All four
maps are G-equivariant with respect to the induced G-action on H∗(E) and the
trivial G-action on H∗(B) and H∗(B). Hence we have maps

π∗ : H∗(E)G → H∗(B)

trf∗ : H∗(B)→ H∗(E)G

π∗ : H∗(B)→ H∗(E)G

trf∗ : H
∗(E)G → H

∗(B)

The basic theorem connecting the two is this special case of the double coset formula
[25, Corollary 6.4, p. 206].

Theorem A.3. Both trf∗ ◦π∗ and π∗ ◦ trf∗ are given by the norm map, i.e. multi-
plication by

∑
g∈G g.
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For ordinary (co)homology theory, π∗ ◦ trf∗ and trf∗ ◦ π∗ are both multipli-
cation by q = |G|. This has the consequence that π∗ and π∗ are isomorphisms
after inverting q. These last composite formulae are no longer true for generalized
(co)homology theories, but one can say something.

A generalized homology theory is 1/q-local if H∗(X)⊗Z→ H∗(X)⊗Z[1/q] is an
isomorphism for all X and m. For example, for any generalized homology theory,
H∗(X)⊗ Z[1/q] is a 1/q-local generalized homology theory. There is an analogous
definition and remark for generalized cohomology theories.

Proposition A.4. Let G be a finite group of order q. Let H∗ and H∗ be 1/q-local
(co)homology theories. Let X be a G-CW -complex and π : X → X the quotient
map.

(i) πm : Hm(X)G
∼=
−→ Hm(X) is an isomorphism for all m ∈ Z.

(ii) If X is a finite CW -complex, then πm : Hm(X)
∼=
−→ Hm(X)G is an iso-

morphism for all m ∈ Z.

Proof. We give the argument only for homology, the one for cohomology is analo-
gous.

Given a G-CW -complex X , we obtain a natural map

j∗ : H∗(X)G → H∗(G\X)

Since the functor sending a Z[1/q][G]-module M to MG is an exact functor, the
assignment sending a G-CW -complex X to H∗(X)G and to H∗(G\X) are G-
homology theories and j∗ is a natural transformation of G-homology theories. One
easily checks that j∗ is a bijection when X is G/H for any subgroup H ⊂ G.
A Mayer-Vietoris argument implies that j∗ is a bijection for any finite G-CW -
complex, and, since homology commutes with colimits, j∗ is a bijection for any
G-CW -complex. �

Atiyah’s computation of K0(BZ/p) shows that a finiteness hypothesis is neces-
sary for a generalized cohomology theory.

At several places in this paper we use a property of edge homomorphisms in
spectral sequences and we review this now. Let H∗ and H∗ be (co)homology the-
ories. Let F → E → B be a fibration. Assume that B is path-connected with
fundamental group G. There are Leray-Serre spectral sequences

E2
i,j = Hi(B;Hj(F ))⇒ Hi+j(E)

Ei,j
2 = Hi(B;Hj(F ))⇒ Hi+j(E).

These spectral sequences have coefficients twisted by the action ofG on the (co)homology
of the fiber, in particular

E2
0,j
∼= H0(G;Hj(F )) = Hj(F )G

E0,j
2
∼= H0(G;Hj(F )) = Hj(F )G.

The spectral sequences give maps

Hj(F )G ∼= E2
0,j ։E∞

0,j ֌ Hj(E)

Hj(E) ։E0,j
∞ ֌ E0,j

2
∼= Hj(F )G;

the composites are called the edge homomorphisms.
The proof of the proposition below follows the proof in the untwisted case [42,

page 354].
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Proposition A.5 (Edge homomorphisms). The edge homomorphisms

Hj(F )G → Hj(E)

Hj(E)→ Hj(F )G

equal the maps on (co)homology induced by the inclusion of the fiber F → E.
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