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Abstract. One may trace the idea that spectral flow should be given as the inte-
gral of a one form back to the 1974 Vancouver ICM address of I.M. Singer. Our
main theorem gives analytic formulae for the spectral flow along a norm differ-
entiable path of self-adjoint bounded Breuer-Fredholm operators in a semi-finite
von Neumann algebra. These formulae have a geometric interpretation which de-
rives from the proof. Namely we define a family of Banach submanifolds of all
bounded self-adjoint Breuer-Fredholm operators and on each submanifold define
global one forms whose integral on a norm differentiable path contained in the
submanifold calculates the spectral flow along this path. We emphasise that our
methods do not give a single globally defined one form on the self adjoint Breuer-
Fredholms whose integral along all paths is spectral flow rather, as the choice of
the plural ‘forms’ in the title suggests, we need a family of such one forms in order
to confirm Singer’s idea. The original context for this result concerned paths of un-
bounded self-adjoint Fredholm operators. We therefore prove analogous formulae
for spectral flow in the unbounded case as well. The proof is a synthesis of key
contributions by previous authors, whom we acknowledge in detail in the intro-
duction, combined with an additional important recent advance in the differential
calculus of functions of non-commuting operators.

1. INTRODUCTION

The notion of spectral flow has been a useful tool in geometry ever since its in-
vention by Lusztig and its application by Atiyah-Patodi-Singer [1, 2]. Until about
a decade ago spectral flow was considered primarily in topological terms as an
intersection number and there seemed to be no analytic viewpoint. This was de-
spite the observation of I.M. Singer [39] that the eta invariant is the integral of a
one form and so, from the variation of eta formula in [1, 2], by implication one is
led to ask whether spectral flow is expressible as the integral of a one-form. In this
paper we provide an answer to this question.

There has been a succession of contributions leading to our resolution of Singer’s
question. We mention initial progress on an analytic approach to spectral flow
in [24, 26–28]. Then in [33, 34] an analytic definition of spectral flow was given.
This definition applied equally to type II von Neumann algebras where opera-
tors with continuous spectrum may arise (an issue initially raised in [31, 32]). A
key step in synthesising these developments was taken in [10, 11] which exploit
an essential contribution of Getzler [26] to produce spectral flow formulae as in-
tegrals of one-forms on affine subspaces of the Banach manifold of self adjoint
Fredholms. Noncommutative geometry plays a key role in all three of these pa-
pers in that theta and finitely summable spectral triples are utilised. The signifi-
cant new ingredient in [10, 11] was the introduction of general analytic methods
which demonstrated that these analytic spectral flow formulae apply equally to
the standard type I situation envisaged by Singer and also to spectral flow along
paths of self adjoint Breuer-Fredholm operators in a type II∞ von Neumann al-
gebra. This development was partly motivated by ideas of Mathai on L2 spectral
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invariants for manifolds whose fundamental group has a non-type I regular rep-
resentation, see [30]. For the benefit of readers unfamiliar with the terminology
above we will summarise the relevant definitions in later Sections. Readers inter-
ested in more details should see the review in [6], while readers unfamiliar with
the Breuer-Fredholm theory may consult [9, 13].

A decisive further development occurred in [5] (see also [4]). The functional cal-
culus methods of [10, 11] simply do not generalise sufficiently to answer Singer’s
question. A more sophisticated functional calculus is needed and this was pro-
vided partly in [5] where it is explained how double operator integrals (DOI) give
a differential calculus for functions of operators. It is the key technical tool we ex-
ploit in the present paper and in order to make the discussion more self contained
we develop, in Section 5, the relevant parts of this DOI technique. A second inno-
vation, which occurred in [42], was a new way to handle paths of unbounded self
adjoint Fredholm operators. In [42] a spectral flow formula for paths that lie in an
affine space of relatively bounded perturbations of a fixed unbounded self adjoint
Fredholm operator was proved. This inspired the present work whose principal
aim is to give a very general answer to Singer’s question in the case of the Ba-
nach manifold of bounded self adjoint Fredholm operators and then to deduce a
generalisation of the unbounded results of [42] from our bounded formula. We
emphasise that the methods are sufficiently strong to answer Singer’s question in
a general semifinite von Neumann algebra.

To illustrate our ideas we now summarise a special case of our results. Sup-
pose M is a semi-finite von Neumann algebra with a normal semifinite faithful
(n.s.f.) trace τ which will be fixed throughout. We take the τ-Calkin algebra to be
the quotient of M by the norm closed ideal generated by the τ−finite projections.
An operator is τ-Fredholm (and hence Breuer-Fredholm) if it is invertible in the
τ−Calkin algebra. Suppose that t 7→ Ft ∈ M is a piecewise C1-path of self adjoint
τ-Fredholm operators such that ‖Ft‖ 6 1 and the spectrum of the image of Ft in
the τ−Calkin algebra is {±1}. If the endpoints of this path, F0 and F1, are unitar-
ily equivalent, then the spectral flow, sf(Ft), may be computed by the following
analytic formula

sf(Ft) =

∫1

0

τ
(
Ḟt h(Ft)

)
dt, (1)

where h is a positive sufficiently smooth function on [−1, 1]. The choice of h is
dictated by the requirement that the RHS of (1) is well defined, namely that∫1

0

∥∥∥Ḟt h(Ft)
∥∥∥

1
dt < +∞, (2)

where ‖·‖1 is the trace norm on M.
In some special cases, formula (1) has been proved by different methods in [5,

10, 11, 42] under various restrictions on the path {Ft}. A feature of the methods we
employ in this paper is that we are able to remove the assumption of [5, 10, 11],
that Fredholm paths {Ft} must lie in the affine space of τ-compact perturbations of
a fixed Fredholm operator F0. This affine space is contractible so that the spectral
flow of any loop in the space is zero and hence these affine space formulae do not
directly reveal the rich topology of the space of Breuer-Fredholm operators. In our
approach this topology is seen by integrating along non-contractible loops in the
space of self adjoint Breuer-Fredholm operators. Note also that each of these affine
spaces lies entirely within one of the submanifolds described in the abstract and
one may recover the ‘global’ formulae of the affine space case studied in [5, 10, 11]
by an approximation argument (although we give details only in the unbounded
case). We emphasise that the consequences of the spectral flow formulae in [10,
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11] for affine spaces are quite profound: they imply for example the local index
formula in noncommutative geometry in semifinite spectral triples [12, 18].

In the present paper we shall show that a modification of the approach of [5]
allows us to prove (1) under only the requirement (2). The formula (1) is a special
case of a much more general formula which we prove in Section 3 of this paper. In
Section 3 we give expressions for spectral flow along norm differentiable paths in
the Banach manifold of bounded self adjoint τ-Fredholms in a semifinite von Neu-
mann algebra. The assumptions under which these formulae hold are the minimal
ones: there are no unnecessary side conditions. As Singer’s question was origi-
nally phrased in the case of spectral flow along paths of unbounded self adjoint
operators, we deduce, in Section 4, unbounded formulae from our bounded one.
Namely we prove that, for a pair D0, D1 of unbounded self adjoint τ-Fredholms,
spectral flow along any path joining them that is smooth in the graph norm of D0

is the integral of a one form defined on the affine space ofD0-graph norm bounded
self adjoint perturbations of D0. This is a strengthening of all previous results (in
particular, those in [5, 10, 11, 42]).

We now summarise the geometric meaning of (1). In Section 3 we give more
details. The space F±1

∗ of all self adjoint τ-Fredholms with norm less than or equal
to one and whose images in the Calkin algebra have spectrum ±1 plays a special
role in the theory as we will see later. (In the Appendix we show that the well
known lemma of [3] that the space F±1

∗ is a deformation retract of the space of self
adjoint Fredholms with both positive and negative essential spectrum still holds in
a semifinite von Neumann algebra.) As F±1

∗ itself does not appear to be a manifold
we need to take care in interpreting our construction. We start with an auxiliary
bigger class namely all self-adjoint τ-Fredholm operators with no ‘essential’ spec-
trum in the interval [−δ, δ] for some δ > 0 (more precisely it is the inverse image
of the open set of self adjoint invertibles in the τ-Calkin algebra bounded away
from zero by δ). This class, denoted Fδ, is an open subset of the self-adjoint part
of the algebra M and therefore, clearly, is a Banach manifold. Any norm contin-
uous path t → Ft, t ∈ [0, 1] in the self adjoint τ-Fredholm operators lies in a Fδ
for some δ > 0. Then the integrand of (1) is a one form in the following sense.
The integrand comes from the functional θF defined on the tangent space to the
manifold of self adjoint τ-Fredholms at F ∈ Fδ by θF(X) = τ(Xh(F)) for a suitably
chosen C1 function hwith support in [−δ, δ]. We will see that this functional gives
an exact one form on sufficiently small convex neighbourhoods of F. (Note that
this geometric viewpoint can be traced back to [26]). Thus (1) is to be interpreted
as the integral of a one form on a path in Fδ. Note however that, in our approach,
there is no global one form on the space of all τ-Fredholm operators that calculates
spectral flow. It is necessary to vary δ and hence the function h depending on the
path in question. Our general formula (which we do not state in this introduction
as it requires much more notation than (1)) applies when the endpoints are not
unitarily equivalent.

To recover the affine space formulae of [10, 11] we need to work in F±1
∗ . To

do this in our approach requires an approximation argument and as a result the
geometric interpretation of the resulting formulae as integrals of one forms is lost.
Thus for the affine space situation the exact one form property of the integrand
has to be reproved ab initio (and we do not do this here cf. [10, 11]).

Also, for the unbounded case in Section 4, we remark that an unbounded self
adjoint operator D is τ-Fredholm if the operator FD = D(1 + D2)−1/2 is a τ-
Fredholm operator in M. The issue of the differentiability of the map D 7→ FD
as a function on the unbounded τ-Fredholms has proved in the past to be the
principal obstacle to proving spectral flow formulae for the unbounded case using
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formulae for the bounded case (see for example the discussion in [42]). One of the
novelties of our approach in this paper is a very satisfactory resolution of this dif-
ferentiability question described in Section 6. This is used in Section 4 to obtain a
straightforward proof of the unbounded formula. As in [26] the motivation for our
approach comes from questions in noncommutative geometry. In the next Section
we will explain one relationship of our results to the latter formalism. This enables
one to understand spectral flow as a pairing of K-homology with K-theory.

The remainder of the paper is organised as follows. We prove the most general
formula for spectral flow along paths of bounded self adjoint τ-Fredholm oper-
ators in Section 3. In Section 4 we deduce from the bounded formula a corre-
sponding formula for paths of unbounded self adjoint τ-Fredholms. We present
the proofs in as direct a fashion as possible deferring technical issues on double
operator integrals to Section 5 and background on graph norm bounded paths of
unbounded operators to Section 6. We present a reasonably detailed discussion
in Sections 5 and 6 to make this paper more self contained and independent of
previous papers on these two topics.

Acknowledgements. This research was supported by the Australian Research
Council and the Hausdorff Institute for Mathematics. We also thank the referee
and Matthias Lesch for valuable comments on an earlier draft.

2. PERTURBATIONS OF SPECTRAL TRIPLES

To explain how the calculation of spectral flow presented in the following Sec-
tions fits into the overall picture in noncommutative geometry [17] we describe
some preliminary results in this Section.

A semifinite spectral triple consists of an unbounded self adjoint operatorD on
a Hilbert space H, a unital ∗-subalgebra A of a semifinite von Neumann algebra
M (with faithful normal semifinite trace τ) acting on H such that the commutator
[D,a] extends to a bounded linear operator on H for all a ∈ A and with D having
τ-compact resolvent in M.

In previous work spectral flow between operators in the affine space of bounded
self adjoint perturbations of D was studied in the context of spectral triples and
a formula for spectral flow proved that provides a first step in the resolution of
Singer’s question. In [10] it is observed that if A is bounded then

FD − FD+A := D(1 +D2)−1/2 − (D+A)(1 + (D+A)2)−1/2

is τ-compact. This observation is crucial to the method of proof of the spec-
tral flow formulae in [10, 11], namely, one deduces the unbounded formula from
a formula for spectral flow in the affine space of τ-compact perturbations of a
fixed bounded τ-Fredholm operator F. In [10] it was observed that if A is an un-
bounded self adjoint operator affiliated to M that is bounded in the graph norm
of a fixed unbounded self adjoint operator D (that is, dom(D) ⊆ dom(A) and
||Av|| 6 c(||v|| + ||Dv||) for some c > 0 and all v ∈ Dom(A)) affiliated to M then
FD − FD+A is bounded but is not τ-compact in M. Thus to prove a spectral flow
formula for spectral flow between D and a graph norm bounded perturbation us-
ing the strategy of [10] requires us to prove a formula for spectral flow for general
paths of bounded self adjoint Fredholm operators.

The noncommutative geometry framework in the bounded case is that of semifi-
nite pre-Fredholm modules (a special case of Kasparov modules [17]). For our
purposes we will only need the following definition. With A and M as above a
semifinite pre-Fredholm module is given by a self adjoint operator F in M such
that 1 − F2 is τ-compact and [F,a] is τ-compact for all a ∈ A. (If F2 = 1 then the
prefix ‘pre’ is dropped.)
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Lemma 1. (i) Any semifinite spectral triple for A defines a semifinite pre-Fredholm
module where we choose F to be FD = D(1 +D2)−1/2.

(ii) If A is a self adjoint unbounded operator such that theD-graph norm of A is less
than 1 and [A,a] is bounded for all a ∈ A thenD+A also defines a spectral triple
for A. The semifinite pre-Fredholm module for A given by FD+A is homotopic to
that given by FD with the homotopy defined by the path {FD+tA, t ∈ [0, 1]}.

Proof. (i) It is sufficient to observe that, since D has a τ-compact resolvent, the
operator 1 − F2

D is τ-compact. Observe also that if [D,a] is bounded, then [FD,a] is
τ-compact (see [37, Theorem 11]).

(ii) To see that D + A defines a spectral triple for A, we have to note that the
operator (1 + (D + A)2)−1 is τ-compact (see [10, Appendix B, Lemma 7]). In or-
der to define a homotopy, the path {FD+tA, t ∈ [0, 1]}, should be continuous with
respect to the operator norm. This follows from the fact (see Section 6 and the
identity (23) in particular) that there is a uniformly bounded family of continuous
linear operators {Tt}06t61 on M such that

FD+tA − FD = t Tt(A(1 +D2)− 1
2 ).

The lemma is proved. �

Phillips definition of spectral flow [33, 34], which is extended and explained in
some detail in [6], depends on a simple observation. Let χ be the characteristic
function of [0,∞). Let N be a semifinite von Neumann algebra with semifinite,
faithful, normal trace, τ. Let {Ft} be any norm continuous path in the bounded
self adjoint τ-Fredholms in N (indexed by some interval [a,b]). If we let π be the
projection onto the Calkin algebra then one may show that π (χ(Ft)) = χ (π(Ft)).
As the spectra of π(Ft) are bounded away from 0, this latter path is continuous. By
compactness we can choose a partition a = t0 < t1 < · · · < tk = b so that for each
i = 1, 2, · · · ,k

||π (χ(Ft)) − π (χ(Fs)) || <
1
2

for all t, s in [ti−1, ti].

Letting Pi = χ(Fti) for i = 0, 1, · · · ,k then by the previous inequality (see [6])
Pi−1Pi : PiH→ Pi−1H is Fredholm. Then we define the spectral flow of the path {Ft}

to be the number:

sf ({Ft}) =

k∑
i=1

ind(Pi−1Pi)

which is independent of the choice of partition of [a,b]. This analytic point of view
recovers the intersection number approach to spectral flow when the operators in
question have discrete spectrum.

The spectral flow for a D-graph norm continuous path {Dt : t ∈ [0, 1]} of un-
bounded self adjoint τ-Fredholms joining D = D0 to D1 affiliated to M is defined
as the spectral flow along the corresponding path FDt of bounded τ-Fredholms.
When u ∈ A the spectral flow along the path

Dt := (1 − t)D+ tuDu∗ = D+ tu[D,u∗]

defines a pairing between the K-homology class defined by the semifinite spectral
triple (H,D, A) and the class of u inK1(A). The preceding lemma gives a condition
on the perturbation A under which the spectral triple defined by D + A gives the
same pairing with K1(A) as does the spectral triple defined by D.

Notice that for an unbounded self adjoint operator D with (1 + D2)−1 being
τ-compact the map D 7→ FD has range in the space of self adjoint bounded τ-
Fredholms of norm less than or equal to one and such that the essential spectrum
is contained in ±1. That is 1 − F2

D = (1 + D2)−1 is τ-compact, explaining in part
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the distinguished role played by this retract of the manifold of all bounded τ-
Fredholm operators in the subsequent exposition.

3. SPECTRAL FLOW FORMULA, BOUNDED CASE.

Let M be a von Neumann algebra and let τ be a n.s.f. trace on M. ‖·‖ stands for
the operator norm on M. Let L1(M) be the predual of M equipped with the trace
norm ‖·‖1. Recall that an operator F ∈M is called τ-Fredholm if and only if

(i) the projections NF and NF∗ are τ-finite;
(ii) there is a τ-finite projection p ∈M, such that Ran(1 − p) ⊆ Ran(F).

HereNF is the projection onto the Ker(F) and Ran(F) is the range of the operator F.
Let K be the two-sided ideal of all τ-compact operators of M. The quotient

space M/K is a C∗-algebra. Let π be the homomorphism

π : M 7→M/K.

Recall the following characterization of the τ-Fredholm operators due to M. Breuer
(see [9, Theorem 1]): An operator F is τ-Fredholm if and only if the image π(F) is invert-
ible. We set δF =

∥∥π(F)−1
∥∥−1. Note that the mapping F 7→ δF is continuous on the

Banach manifold of τ-Fredholm operators.
We shall denote the set of all self adjoint τ-Fredholm operators F ∈M by F∗. We

also shall denote the subset of F∗ with ‖F‖ 6 1 and δF = 1 by F±1
∗ .

The characterization of M. Breuer implies that if F is a self adjoint τ-Fredholm
operator, then, for every 0 6 δ < δF, the spectral projection EF(−δ, δ) is τ-finite i.e.,

τ
(
EF(−δ, δ)

)
< +∞, 0 6 δ < δF.

Indeed, fix 0 6 δ < δF. Consider the operator Fδ = F − F EF(−δ, δ). We then have
that

‖π(F) − π(Fδ)‖ 6 ‖F− Fδ‖ 6 δ < δF =
∥∥π(F)−1

∥∥−1 .

Consequently, the operator π(Fδ) is invertible and therefore Fδ is τ-Fredholm. This
means that there is a τ-finite projection p such that 1 − p ⊆ Ran(Fδ). The latter
implies that EF(−δ, δ) ⊆ p which means that the projection EF(−δ, δ) is τ-finite.
Furthermore,

Lemma 2. (i) For every F ∈ F∗ and every bounded Borel function g supported
on the interval [−δF, δF] such that limx→±δF g(x) = g(±δF) = 0, the opera-
tor g(F) is τ-compact. In particular, if F ∈ F±1

∗ , then 1 − F2 and F − B are
τ-compact, where B = 2χ[0,+∞)(F) − 1.

(ii) For every F0 ∈ F∗ and every 0 < δ < δF0 , there is a neighbourhoodN of F0 such
that the mapping F 7→ EF(−δ, δ) is trace norm bounded on the self adjoint part
of N.

Proof. (i) To see that the operator g(F) is τ-compact, it is sufficient to show that, for
every ε > 0, there is a τ-compact operator Kε such that ‖g(F) − Kε‖ < ε.

Fix ε > 0. Let xε be the point 0 < xε < δF such that

|g(x)| < ε, for every xε 6 |x| 6 δF.

We set Kε = g(F)χ[−xε,xε](F). Since the function g is bounded and the projec-
tion χ[−xε,xε](F) is τ-finite, the operator Kε is τ-compact. On the other hand, by
the choice of xε, we see that

‖g(F) − Kε‖ 6 sup
xε6|x|6δF

|g(x)| < ε.

The proof is finished.
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(ii) Assume first that F0 ∈ F±1
∗ . In this special case, the proof employs the

argument of [5, Lemma 1.26.(ii)]. Let F = F0 +Awhere A is self adjoint and ‖A‖ 6
1
6 (1 − δ2). Clearly,

1 − F2 = 1 − F2
0 + B

where B = F0A + AF0 − A2 and ‖B‖ 6 1
2 (1 − δ2). Let µt(X) be a decreasing

rearrangement of the operator X ∈M (see [25]). Note that

χ(−δ,δ)(x) 6
1 − x2

1 − δ2
, |x| 6 1.

This observation together with [25, Lemma 2.5] implies that

µt
(
EF(−δ, δ)

)
6

1
1 − δ2

µt
(
1 − F2

)
6

1
1 − δ2

[
µ t

2

(
1 − F2

0

)
+ µ t

2
(B)
]
6

1
1 − δ2

µ t
2

(
1 − F2

0

)
+

1
2

.

Since the operator 1 − F2
0 is τ-compact, the function t 7→ µt(1 − F2

0) is decreasing
to 0 at +∞. Thus, we see that the functions t 7→ µt

(
EF(−δ, δ)

)
are uniformly

majorized across

F ∈ N =

{
F0 +A, ‖A‖ 6 1

6
(1 − δ2)

}
by a single decreasing function with value 1

2 at +∞. On the other hand, we know
that

µt
(
EF(−δ, δ)

)
= χ[0,τ(EF(−δ,δ))].

Consequently, the value
τ
(
EF(−δ, δ)

)
is uniformly bounded across N.

Let now F0 ∈ F∗. Let θ be a C2-function such that (i) θ ′ is nonnegative and sup-
ported on the interval [−δF0 , δF0 ]; (ii) θ(±∞) = ±1. Clearly, θ(F0) ∈ F±1

∗ . More-
over, the mapping F 7→ θ(F) is operator norm continuous (see Remark 18). Con-
sequently, the claim of the lemma for the general F0 ∈ F∗ holds with the preim-
age θ−1(N) of the ball N constructed with respect to the operator θ(F0) ∈ F±1

∗
above. �

If t 7→ Ft ∈ F∗ is a continuous path of self adjoint τ-Fredholm operators, then
sf(Ft) stands for the spectral flow as defined in [6,34]. We shall prove the following
analytic formula for spectral flow, which extends that of [42, Theorem 6.4] and [5,
Theorem 3.18].

Theorem 3. Let Ft : [0, 1] 7→ F∗ be a piecewise C1-path of self adjoint τ-Fredholm
operators. If h is a positive C2-function supported on [−δ, δ], where δ = min06t61 δFt ,
such that

(i)
∫+δ

−δ h(x)dx = 1;

(ii)
∫1

0

∥∥∥Ḟt h(Ft)
∥∥∥

1
dt < +∞;

(iii) H(F1) −H(F0) + 1
2B0 − 1

2B1 ∈ L1(M), where H(x) is an antiderivative of h(x)

such that H(±δ) = ± 1
2 and Bj is the phase of Fj, i.e., Bj = 2χ[0,+∞)(Fj) − 1,

j = 0, 1;
then

sf(Ft) =

∫1

0

τ
(
Ḟt h(Ft)

)
dt+ τ

(
H(F1) −H(F0) +

1
2
B0 −

1
2
B1

)
. (3)
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Remark 4. (i) Observe that every positive C1-function h, which is supported on a
proper subinterval of [−δ, δ] (where δ is defined in Theorem 3 and such that∫δ

−δ

h(x)dx = 1,

satisfies the conditions of Theorem 3. Indeed, (i) is trivial; (ii) follows from Lemma 2.(ii)
which implies that the function t ∈ [0, 1] 7→ ‖h(Ft)‖1 is bounded; and (iii) follows
from Lemma 2.(ii) again and the observation that the function

χ(0,+∞)(x) −
1
2

−H(x)

is bounded and supported on a proper subinterval of [−δ, δ].
(ii) In previous papers the case where we work in a subset of the τ-Fredholms

consisting of operators F satisfying the condition (1 − F2)n/2 is trace class [10]
or e−|1−F2|−1

is trace class [11] (the n-summable or theta summable cases respec-
tively) were studied. Thus in the setting of Theorem 3 we would choose h to be
given on [−1, 1] by either h(x) = (1 −x2)n/2 or h(x) = e−|1−x2|−1

and to be zero on
the complement of [−1, 1]. Notice that these two functions do not satisfy the as-
sumptions of the theorem if we allow operators with essential spectrum ±1. This
minor difficulty is handled by an approximation argument which we describe in
the proofs below.

Let t ∈ [0, 1] 7→ Ft be a loop of self adjoint τ-Fredholm operators, F0 = F1.
It is shown in [34, Remark 2.4] that if the loop Ft lies within sufficiently small
neighbourhood in M, then the spectral flow along this loop is 0. One of the steps
in proving the analytic formula of Theorem 3 is to show that the integral (3) is
also 0 for such loops. This is precisely the part where the proof of the spectral
formula in [42] exploits the assumption that the mapping t 7→ 1 − F2

t is C1 with
respect to the trace norm. We shall first see that, with some modification, the
proof of [5, Proposition 3.5] allows us to avoid the latter restriction (see Theorem 5
below). This modification is based on results from [20, 21, 36].

Let F0 ∈M be a τ-Fredholm operator and letN(F0) be the neighbourhood given
by

N(F0) = {F ∈M, ‖π (F− F0)‖ < δF0 } .
Clearly, applying M. Breuer’s result, every F ∈ N(F0) is τ-Fredholm. Observe also
that N(F0) is convex.

Theorem 5. Let t ∈ [0, 1] 7→ Ft ∈ F∗ be a piecewise C1-loop (F0 = F1) of τ-Fredholm
operators such that Ft ∈ N, t ∈ [0, 1], where N is an open convex subset of M such that
the norm closure N̄ is a subset of N(F0). If h is a positive C2-function such that

(i) supph ⊆ [−δ, δ] where δ = minF∈N δF > 0;
(ii)
∫1

0

∥∥∥Ḟt h(Ft)
∥∥∥

1
dt < +∞,

then ∫1

0

τ
(
Ḟt h(Ft)

)
dt = 0.

Proof. Observe that, since the space L1([0, 1],L1(M)) (= the space of all Bochner
integrable L1(M)-valued functions on [0, 1]) is separable, for every function h such
that supph ⊆ [−δ, δ] there is a sequence1 of positive C2-functions (hn)∞n=1 such
that

supphn ⊆ (−δ, δ) and lim
n→∞

∫1

0

∥∥∥Ḟthn(Ft) − Ḟth(Ft)
∥∥∥

1
dt = 0.

1To this end, it is sufficient to construct a sequence of functions hn such that the difference h−hn
is uniformly bounded and the support of the difference h−hn vanishes as n→∞ and then refer to,
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Consequently,∫1

0

τ
(
Ḟt hn(Ft)

)
dt = 0, ∀n > 1 =⇒

∫1

0

τ
(
Ḟt h(Ft)

)
dt = 0.

Thus, without loss of generality, we may assume that supph ⊆ (−δ, δ).
Let supph ⊆ (−δ, δ) and let g be a positive function such that suppg ⊆ (−δ, δ),

g
1
2 ∈ C2 and g(x) = 1 for every x in some neighbourhood of supph. Let us show

that the mapping t ∈ [0, 1] 7→ g(Ft) is a continuous function with respect to the
trace norm. Indeed, by the representation

g(Ft) − g(Fs) = g
1
2 (Ft)

(
g

1
2 (Ft) − g

1
2 (Fs)

)
+
(
g

1
2 (Ft) − g

1
2 (Fs)

)
g

1
2 (Fs),

is it clear that this mapping is continuous in the trace norm provided the func-
tion t 7→ g

1
2 (Ft) is continuous in the operator norm and bounded in the trace

norm. For the former, note that t 7→ Ft is operator norm continuous and g
1
2 ∈ C2

and therefore the path t 7→ g
1
2 (Ft) is also operator norm continuous (see Re-

mark 18). For the latter, observe that (i) 0 6 g(x) 6 χ(x), for some indica-
tor function χ of a proper subinterval of (−δ, δ); (ii) consequently, according to
Lemma 2.(ii), the function t 7→ g

1
2 (Ft) is bounded with respect to the trace norm

in a small neighbourhood of every point t ∈ [0, 1]; (iii) finally, due to compact-
ness, this function is also globally bounded. Observe also that, since h is C2, the
mapping t 7→ h(Ft) is operator norm continuous (see Remark 18). Furthermore,
since h(Ft) = h(Ft)g(Ft), the mapping t 7→ h(Ft) is also continuous with respect to
the trace norm. We shall single out the argument presented above as the following
lemma.

Lemma 6. For every F0 ∈ F∗ and every C2-function h supported on a proper subinterval
of [−δF0 , δF0 ], there is a neighbourhood N of F0 such that the mapping F ∈ N 7→ h(F) is
trace norm continuous on the self adjoint part of N.

From this point on, the proof of Theorem 5 follows that of [5, Proposition 3.5].
We shall show that there is a function θ : N 7→ C such that

dθF(X) = τ(Xh(F)), X ∈M. (4)

In other words, we shall show that the one form X → τ (Xh(F)) is exact. This will
finish the proof.

Fix the element F ∈ N(F0). For the rest of the proof, r ∈ [0, 1] 7→ Fr ∈ N stands
for the straight line path connecting F0 and F (i.e., Fr = (1−r)F0+rF). We introduce
the function θ : N 7→ C as follows

θ(F) =

∫1

0

τ
(
Ḟr h(Fr)

)
dr.

Let dθF(X), X ∈M be the differential form of θ, i.e.,

dθF(X) := lim
s→0

1
s

(θ(F+ sX) − θ(F)) .

e.g. [16, Proposition 2.1]. Observe also that one can also achieve that∫
R
hn(x)dx = 1, ∀n > 1.
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Now we prove (4). Fix X ∈M. Following the definition of the function θ, a simple
computation yields

1
s

(θ(F+ sX) − θ(F)) =

∫1

0

τ (Xh(Fr + srX)) dr

+

∫1

0

τ

(
Ḟr

1
s

(h(Fr + srX) − h(Fr))

)
dr, (5)

where r ∈ [0, 1] 7→ Fr is the straight line path connecting F0 and F.
Let us consider the algebra N = L∞[0, 1]⊗̄M equipped with the trace τ1 =∫1

0 dr ⊗ τ (see [41]). The mapping F̄ : r 7→ Fr is a τ1-Fredholm operator in N

with δF̄ > δ and the mapping X̄ : r 7→ rX is an element of N. Applying Lemma 6,
we see that the mapping s 7→ h(F̄+ sX̄) is continuous in L1(N) in some neighbour-
hood of 0. Consequently, letting s→ 0, yields that the first term in (5) approaches∫1

0

τ (Xh(Fr)) dr.

For the second term of (5), we shall show that

lim
s→0

∫1

0

τ

(
Ḟr

1
s

(h(Fr + srX) − h(Fr))

)
dr =

∫1

0

r τ

(
X
d

dr
[h(Fr)]

)
dr. (6)

If (6) is proved, then, letting s→ 0, we see from (5) that

dθF(X) = τ

(
X

(∫1

0

h(Fr) + r
d

dr
[h(Fr)] dr

))
.

Thus, to finish the proof of (4), we have to show that∫1

0

h(Fr) + r
d

dr
[h(Fr)] dr = h(F).

This readily follows if we integrate the second term by parts. Namely, integrating
by parts, we have ∫1

0

r
d

dr
[h(Fr)] dr = h(F1) −

∫1

0

h(Fr)dr.

Next we prove (6). The proof of (6) heavily relies on the theory of Double Oper-
ator Integrals (DOIs) developed in [20, 21, 36] recently. We will describe in Section
5 sufficient background on DOIs for the reader to appreciate their role in this Sec-
tion. Let again N = L∞[0, 1]⊗̄M be a tensor product von Neumann algebra with
the trace τ1 =

∫1

0 dr ⊗ τ. It is proved in Lemma 19 below that there are families2

of linear operators {Ts}, {T ′s} and {T ′′s } uniformly bounded on N and on L1(N) such
that

(a) Ts = T ′s + T ′′s ;
(b) T ′s(Y) = g(Fr + srX) T ′s (Y), Y ∈ N;
(c) T ′′s (Y) = T ′′s (Y) g(Fr), Y ∈ N;
(d) h(Fr + srX) − h(Fr) = Ts(srX);
(e) d

dr
[h(Fr)] = T0(Ḟr);

(f) τ(T0(Y)Z) = τ(YT0(Z)), Y,Z ∈ N;
(g) lims→0 ‖T ′s(Y) − T ′0(Y)‖1 = lims→0 ‖T ′′s (Y) − T ′′0 (Y)‖1 = 0, Y ∈ L1(N).

2The property (e) follows from the corresponding statement of Lemma 19 if one takes the group of
∗-automorphisms given by translations in L∞[0, 1]⊗̄M, i.e.

γt(Fr) = Fr+t, Fr ∈ N, r, t ∈ [0, 1]

where the group [0, 1] is equipped with summation modulo 1
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Observe first that (a), (b) and (c) together with the fact that the mapping s 7→
g(F̄ + sX̄) is trace norm continuous, readily implies that Ts, T ′s, T ′′s ∈ B(N,L1(N)).
In particular, the fact that the operator T0 ∈ B(N,L1(N)) and (e) guarantee that the
mapping r 7→ d

dr
[h(Fr)] is trace norm continuous and the right hand side of (6) is

well-defined. Furthermore,

1
s

(h(Fr + srX) − h(Fr))
(d)
= Ts(rX) =

(a), (b) and (c) = g(Fr + srX) T ′s (rX) + T ′′s (rX) g(Fr)

= (g(Fr + srX) − g(Fr)) T
′
s (rX) + g(Fr) T

′
s (rX) + T ′′s (rX)g(Fr).

Letting s→ 0 yields

lim
s→0

1
s

(h(Fr + srX) − h(Fr))
(g)
= g(Fr) T

′
0(rX) + T ′′0 (rX)g(Fr)

(b) and (c) = T ′0(rX) + T ′′0 (rX)
(a)
= T0(rX),

where the limit converges in L1(N). Finally,

lim
s→0

τ1

(
Ḟr

1
s

(h(Fr + srX) − h(Fr))

)
= τ1

(
Ḟr T0(rX)

)
(f)
= τ1

(
XT0(rḞr)

)
(e)
= τ1

(
X r

d

dr
[h(Fr)]

)
.

Thus, (6) is proved. �

Let us now proceed with the proof of Theorem 3.

Proof of Theorem 3. Note that similarly to the proof of Theorem 5, we may assume
that supph ⊆ (−δ, δ).

Let us show that without loss of generality, we may assume that the path t 7→ Ft
is contained in F±1

∗ . Indeed, consider a C2-function θ such that supp θ ′ ⊆ (−δ, δ)
and θ(±δ) = ±1. Let us introduce the path t 7→ Gt = θ(Ft) and the function k(x) =
K ′(x), where K is such that H(x) = K(θ(x)). Observe that Gt ∈ F±1

∗ and δGt = 1.
Let us verify that the path t 7→ Gt and the function k(x) satisfies the assump-

tions of Theorem 3. (i) is clear from

1 =

∫δ
−δ

h(x)dx =

∫δ
−δ

k(θ(x)) θ ′(x)dx =

∫1

−1

k(y)dy.

For (ii), note that, (a) since suppk is a proper subinterval of (−1, 1), the func-
tion t 7→ k(Gt) is bounded with respect to the trace norm ‖·‖1; (b) according to
Remark 18, the path t 7→ Gt is C1 with respect to the operator norm. Conse-
quently, the quantity in the assumption (ii) is finite. (iii) is clear, since

K(Gj) = H(Fj) and χ[0,+∞)(Gj) = χ[0,+∞)(Fj), j = 0, 1.

Thus, we see that the path t 7→ Gt and the function k(x) satisfies the assumption
of Theorem 3 and Gt ∈ F±1

∗ .
On the other hand, we also have that

sf(Ft) = sf(Gt) and τ
(
Ḟt h(Ft)

)
= τ

(
Ġt k(Gt)

)
, 0 6 t 6 1.

The former is clear from the definition of the spectral flow. For the latter, observe
that there is a uniformly bounded family of continuous linear operators {Tt}06t61
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on M such that Ġt = Tt(Ḟt) (see Lemma 19.(e)) such that

τ
(
Ġtk(Gt)

)
= τ

(
Tt(Ḟt)k(θ(Ft))

)
= τ

(
Ḟtθ
′(Ft)k(θ(Ft))

)
= τ

(
Ḟth(Ft)

)
,

where the second identity is due to Lemma 203.
Therefore, for the rest of the proof, we assume that the path t 7→ Ft is taken

from F±1
∗ and supph ⊆ (−1, 1).

For every t ∈ [0, 1], let Nt be an open convex set given by

Nt = {F ∈M, ‖π(F− Ft)‖ < εt} ⊆ N(Ft),

for some 0 < εt < 1 such that supph ⊆ (−δt, δt), where δt = minF∈Nt δF (one
can find suchNt since the mapping F 7→ δF is continuous with respect to the semi-
norm ‖π (·)‖). The preimages of the family {Nt}06t61 under the mapping t 7→ Ft
produce an open covering of [0, 1]. Consequently, due to compactness, we can
finitely partition the segment [0, 1] by some points

0 = t0 < t1 < . . . < tn = 1

such that every segment t ∈ [tk−1, tk] 7→ Ft of the path t 7→ Ft lies within the open
convex set Nk = Ntk ⊆ N(Fk) and supph ⊆ (−δk, δk), where δk = minF∈Nk δF.
Observe also that identity (3) (which we are proving) is additive with respect to
partitioning of the path t 7→ Ft. Thus, we need only to prove this identity for each
segment [tk−1, tk]. Hence, from now on, we shall assume that the path t ∈ [0, 1] 7→
Ft lies entirely within the convex open set

N = {F ∈M, ‖π(F− F0)‖ < ε} ⊆ N(F)

for some 0 < ε < 1 and that supph ⊆ (−δ, δ), where δ = minF∈N δF.
LetBj = 2χ[0,+∞)(Fj)−1, j = 0, 1 be two involutions and let t ∈ [0, 1] 7→ Bt be the

straight line path connecting B0 and B1 (i.e., Bt = (1 − t)B0 + tB1). Since Fj ∈ F±1
∗ ,

by Lemma 2.(i), the difference Fj − Bj is τ-compact and therefore π(Fj − Bj) = 0.
The latter implies that the loop

F0 −−−−→ F1x y
B0 ←−−−− B1

lies within the setN, where the segment B0 → F0 and F1 → B1 are the straight line
paths. Applying Theorem 5 for this loop implies that∫1

0

τ
(
Ḃth(Bt)

)
dt =

∫1

0

τ
(
Ḟth(Ft)

)
dt+ γ1 − γ0,

where γj are the integrals along the straight line paths connecting Fj and Bj, i.e.,

γj =

∫1

0

τ ((Fj − Bj) h ((1 − t)Fj + tBj)) dt, j = 0, 1.

Let us show that

H(Fj) −
1
2
Bj =

∫1

0

(Fj − Bj)h ((1 − t)Fj + t Bj) dt, j = 0, 1 (7)

Observe that every operator in (7) is a function of Fj. Moreover, the operators on
both sides of this identity are supported on the projection Ej = χsupph(Fj). Indeed,

3applied to the function

φ(λ,µ) = k
1
2 (θ(λ))

θ(λ) − θ(µ)

λ−µ
k

1
2 (θ(µ)).
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on the right hand side, the support is determined by the function h, and, on the
left hand side, observe that the function

H−
1
2
(
χ[0,+∞) − χ(−∞,0)

)
vanishes outside of the support supph, which clearly implies that H(Fj) − 1

2Bj is
supported on Ej. Thus, we may consider the identity on the algebra generated
by the operator EjFj. Since the projection Ej is τ-finite, the latter algebra is ∗-
isomorphic to a subalgebra L∞(R,dσ), where σ(∆) = τ (χ∆(Fj)Ej), ∆ ⊆ R.

In the setting of the algebra L∞(R,dσ), identity (7) holds a.e. due to the Newton-
Leibniz theorem and the integral converges with respect to the ultra-weak topol-
ogy. This, in particular, implies that H(Fj) − 1

2Bj ∈ L
1(R,dσ) ⊆ L1(M). Taking

trace τ from the latter identity gives

γj = τ

(
H(Fj) −

1
2
Bj

)
.

Observing that from the definition of the spectral flow, it follows that sf(Ft) =
sf(Bt), it is clear that to finish the proof we need only to show now that

sf(Bt) =

∫1

0

τ
(
Ḃt h(Bt)

)
dt. (8)

The argument establishing (8) is similar to [42, Proposition 4.3]. Observe, that
the path Bt consists of invertible operators excepting the point B 1

2
. Observe also

that the operator B2
1
2

commutes with the every Bt, t ∈ [0, 1]. Let δ1 be such that

0 < δ1 < δ and supph ⊆ [−δ1, δ1]. Since B 1
2
∈ N, the projection E = χ[0,δ21]

(
B2

1
2

)
is τ-finite. Moreover, the projection E commutes with every Bt, t ∈ [0, 1]. Let us
decompose the path t 7→ Bt into the direct sum of two paths

t 7→ EBtE and t 7→ (1 − E)Bt (1 − E). (9)

Observe now that the second path in the latter decomposition consists of invert-
ible operators (in the algebra (1 − E) M (1 − E)) and therefore the spectral flow
vanishes on this path (see [34, Remark 2.3]). On the other hand, due to the choice
of δ1 and the projection E, the spectrum of (1 − E)B 1

2
(1 − E) lies outside of the

interval [−δ1, δ1]. Furthermore, it is easy to see the inequality B2
t > B2

1
2

, which
means that the statement about the spectrum of B 1

2
above is equally valid for ev-

ery (1 − E)Bt (1 − E). Thus, we see that

h ((1 − E)Bt(1 − E)) = 0, t ∈ [0, 1]

and therefore the integral in (8) also vanishes on the second path in the decompo-
sition (9).

Identity (8) is additive with respect to direct sums. Consequently, we need to
prove (8) only for the path t 7→ EBtE. Regarding the latter path as a path in a finite
algebra EME, the identity follows from [6, § 5.1]. �

It now follows from the arguments in this Section that we have also proved the
following result.

Corollary 7. Let Fδ be the set of self adjoint τ-Fredholm operators in N whose essential
spectrum does not intersect the interval [−δ, δ]. This is an open submanifold of the Banach
manifold of all self adjoint τ-Fredholm operators. For h as in Theorem 3 the one form θ

on Fδ, given by defining for each F ∈ Fδ the functional θF on the tangent space to Fδ at
F by X → τ(Xh(F), is closed. Spectral flow along any piecewise C1 path in Fδ may be
interpreted as being obtained by integrating this one form.
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4. SPECTRAL FLOW FORMULA, UNBOUNDED CASE.

We shall now discuss analytic formulae for paths of unbounded self adjoint lin-
ear operators. Across this Section, t ∈ [0, 1] 7→ Dt stands for a path of unbounded
self adjoint linear operators affiliated4 with M. In order to to be able to compute
the spectral flow of this path we assume that the path t ∈ [0, 1] 7→ Ft = ϑ(Dt) is a
continuous path of τ-Fredholm operators, where

ϑ(x) =
x

(1 + x2)
1
2

. (10)

In this case, by definition, we set sf(Dt) = sf(Ft). Furthermore, to be able to con-
sider analytic formulae for the spectral flow of the path Dt, we shall also impose
a smoothness assumption onto Dt. Namely, the following definition is in order.

Definition 8. (i) A path t ∈ [0, 1] 7→ Dt is called Γ -differentiable at the point t =
t0 if and only if there is a bounded linear operator G such that

lim
t→t0

∥∥∥∥Dt −Dt0
t

(1 +D2
t0

)− 1
2 −G

∥∥∥∥ = 0.

In this case, we set Ḋt0 = G (1 +D2
t0

)
1
2 . The operator Ḋt is a symmetric linear

operator with the domain dom(Dt) (see Lemma 25 below).
(ii) If the mapping t 7→ Ḋt(1 + D2

t)
− 1

2 is defined and continuous with respect to
the operator norm, then we call the path t 7→ Dt continuously Γ -differentiable
or C1

Γ -path5.

The main analytic spectral flow formula in the unbounded case is given by the
following theorem.

Theorem 9. Let t ∈ [0, 1] 7→ Dt be a piecewise C1
Γ -path of linear operators and ϑ(Dt) ∈

F±1
∗ . If g : R 7→ R is a positive C2-function such that

(i)
∫+∞

−∞ g(x)dx = 1;

(ii)
∫1

0

∥∥∥Ḋtg(Dt)∥∥∥
1
dt < +∞;

(iii) G(F1)−
1
2B1−G(F0)+

1
2B0 ∈ L1(M), whereBj are the phases of Dj, j = 0, 1, i.e.,

Bj = 2χ[0,+∞)(Dj)−1, andG is the antiderivative of g such thatG(±∞) = ± 1
2 ;

then

sf(Dt) =

∫1

0

τ
(
Ḋt g(Dt)

)
dt+ τ

(
G(D1) −

1
2
B1 −G(D0) +

1
2
B0

)
.

Since the spectral flow for a path of unbounded linear operators is defined by
the spectral flow of the corresponding path of bounded operators (via the map-
ping D 7→ ϑ(D)), the proof of the theorem above is based on a reduction to
the “bounded” spectral flow formula given by Theorem 3. In this reduction the
main part is the question whether the path t 7→ ϑ(Dt) is C1 in the operator norm
provided the path t 7→ Dt is C1

Γ . The latter question has been left open in [42]
(see p. 21). We shall resolve this problem in Theorem 22 below.

Proof of Theorem 9. As in the proof of Theorem 3, we may assume that the func-
tion g is compactly supported (see footnote 1 on p. 9). Let h be a function such

4Recall that a linear operatorD : dom(D) 7→ H is called affiliated with a von Neumann algebra M

if and only if u(dom(D)) ⊆ dom(D) and u∗Du =D for every u ∈M ′.
5It may be shown that the class of all C1

Γ -paths is the class of all paths which are continuously dif-
ferentiable with respect to the graph norm of some fixed operator on this path (see [42]). We, however,
will not use this connection below
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that

g(x) =
h(ϑ(x))

(1 + x2)
3
2

and let Ft = ϑ(Dt). The function h is a C2-function supported on a proper subin-
terval of [−1, 1] and Ft ∈ F±1

∗ by assumption.
Let us verify that the path t ∈ [0, 1] 7→ Ft ∈ F±1

∗ and the function h satisfies the
hypothesis of Theorem 3.

(i) Due to Theorem 22, the mapping t 7→ Ft is piecewise C1.
(ii) Observe that∫1

−1

h(ϑ)dϑ =

∫+∞
−∞ h(ϑ(x)) ϑ ′(x)dx =

∫+∞
−∞ g(x)dx = 1.

(iii) Since g is compactly supported, the function h is supported on a proper
subinterval of [−1, 1] and therefore the mapping t 7→ h(Ft) is continuous
in the trace norm (see Lemma 6). In particular,∫1

0

∥∥∥Ḟth(Ft)
∥∥∥

1
dt < +∞.

Applying Theorem 3, we readily obtain that

sf(Dt) =

∫1

0

τ
(
Ḟt h(Ft)

)
dt+ τ

(
H(F1) −H(F0) −

1
2
B1 +

1
2
B0

)
.

Note that ifH(x) is the antiderivative of h(x) such thatH(±1) = ± 1
2 , thenH(ϑ(x)) =

G(x). Consequently,
H(Fj) = G(Dj), j = 0, 1

and

τ
(
Ḟt h(Ft)

)
= τ

(
Ḋtθ

′(Dt)h(ϑ(Dt))
)

= τ
(
Ḋt g(Dt)

)
, t ∈ [0, 1].

The theorem is proved. �

Before we consider applications of Theorem 9, let us note that applying the ar-
gument of the proof above to Theorem 5, we obtain the answer to Singer’s question
in the form framed for elliptic operators on compact manifolds.

Theorem 10. If D is a self-adjoint linear operator with τ-compact resolvent and g is a
C2-function, then the one form τ (Vg(D)) is exact on the affine space of all D-bounded
perturbations V such that Vg(D) ∈ L1(M). In other words, if t ∈ [0, 1] 7→ Dt is a
C1
Γ -loop (D0 = D1) of unbounded self-adjoint linear operators with τ-compact resolvent

such that ∫1

0

∥∥∥Ḋtg(Dt)∥∥∥
1
dt

is finite, then ∫1

0

τ
(
Ḋt g(Dt)

)
dt = 0.

By choosing specific functions g, Theorem 9 above allows a number of impor-
tant corollaries. We shall state only two of them in Theorems 11 and 12 below.
These theorems extend [42, Propositions 6.7 and 6.9] and earlier results of [10, 11].

Theorem 11. If t ∈ [0, 1] 7→ Dt is a piecewise C1
Γ -path of unbounded linear operators

such that Dt is θ-summable6, t ∈ [0, 1] and∫1

0

∥∥∥Ḋte−εD2
t

∥∥∥
1
dt < +∞, ε > 0,

6A self adjoint operatorD is called θ-summable if and only if e−εD2 ∈ L1(M) for every ε > 0.
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then

sf(D0,D1) =

√
ε

π

∫1

0

τ
(
Ḋt e

−εD2
t

)
dt

+ τ

(
G(D1) −

1
2
B1 −G(D0) +

1
2
B0

)
, ε > 0,

where

G(x) =

√
ε

π

∫x
−∞ e−εt2 dt−

1
2

.

Proof. The proof is specialization of Theorem 9 to the case g(x) =
√
ε
πe

−εx2
, pro-

vided we have checked that

ϑ(Dt) ∈ F±1
∗ , t ∈ [0, 1] and G(Dj) −

1
2
Bj ∈ L1(M), j = 0, 1. (11)

For the first statement in (11), observe that

e−εn2
χ[−n,n](x) 6 e

−εx2
, x ∈ R, n > 1,

which means that every projection χ[−n,n](Dt) is τ-finite. Furthermore, note also
that, under the mapping x 7→ ϑ(x), compactly supported indicator functions are
mapped onto indicators of proper subintervals of [−1, 1]. Thus, we see that if Ft =
ϑ(Dt), then every projection χ(Ft) is τ-finite where χ is an indicator of a proper
subinterval of [−1, 1]. Consequently, Ft ∈ F±1

∗ .
For the second statement in (11), let us consider the function

f(x) = G(x) − χ[0,+∞)(x) +
1
2

. (12)

Clearly,

G(Dj) −
1
2
Bj = f(Dj).

Thus, the required assertion follows from the estimate

|f(x)| 6 e−ε2 x
2

√
ε

π

∫−|x|

−∞ e−ε2 t
2
dt

and the fact that Dt is θ-summable. �

This last result should be compared with Corollary 8.11 of [11]

Theorem 12. If t ∈ [0, 1] 7→ Dt is a piecewise C1
Γ -path such thatDt is p-summable7 for

some 1 6 p <∞ and ∫1

0

∥∥∥(1 +D2
t)

−p2

∥∥∥
1
dt < +∞,

then

sf(D0,D1) =
1
cp

∫1

0

τ
(
Ḋt (1 +D2

t)
−p2 − 1

2

)
dt

+ τ

(
G(D1) −

1
2
B1 −G(D0) +

1
2
B0

)
,

where

cp =

∫+∞
−∞ (1 + x2)−p2 − 1

2 dx, G(x) =
1
cp

∫x
−∞(1 + t2)−p2 − 1

2 dt−
1
2

.

7A self adjoint operatorD is calledp-summable, for some 1 6 p <∞ if and only if (1+D2)−p2 ∈
L1(M)
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Proof. The proof consists of specialization of Theorem 9 (and justifying (11)) for
the case g(x) = 1

cp
(1 + x2)−p2 − 1

2 .

By the assumption, the mapping t 7→ Ḋt(1 +D2
t)

− 1
2 is operator norm continu-

ous, hence ∫1

0

∥∥∥Ḋt (1 +D2
t)

−p2 − 1
2

∥∥∥
1
dt < +∞.

Now, for the first statement in (11) as in the proof of Theorem 11 it is sufficient
to note the estimate

(1 + n2)−p2 − 1
2 χ[−n,n](x) 6 (1 + x2)−p2 − 1

2 , x ∈ R, n > 1.

Consequently, every projection χ[−n,n](Dt) is τ-finite and the argument is repeated
verbatim.

For the second statement in (11), we shall estimate the function f(x) given in (12)
as follows

|f(x)| =
1
cp

∫−|x|

−∞ (1 + t2)−p2 − 1
2 dt 6

1
cp

∫−|x|

−∞ |t|
−p−1

dt

=
1
p cp

|x|
−p 6

2
p
2

p cp
(1 + x2)−p2 , |x| > 1.

�

A customary assumption in non-commutative geometry (see [5, 10, 11]) is that
the path t ∈ [0, 1] 7→ Dt isC1 with respect to the operator norm (which is a stronger
assumption than the C1

Γ assumption). Under this assumption, the statement of
Theorem 11 remains exactly the same (except the symbol Ḋt now stands for the
ordinary Gâteaux derivative). On the other hand, when t 7→ Dt is a C1-path in the
operator norm, Theorem 12 changes to Theorem 13 below. In the latter theorem,
we no longer need the additional resolvent factor under the trace in the spectral
flow formula to guarantee summability. The observations above, regarding piece-
wise C1-paths t 7→ Dt, cover the spectral flow formulae proved in [5,10]. Observe
also that, in the latter case, the p-summability assumption is no longer sufficient
to guarantee that the end points satisfy the boundary assumptions of Theorem 9
and therefore we have to require this explicitly in Theorem 13 below.

Theorem 13. If t ∈ [0, 1] 7→ Dt is a piecewise C1-path (with respect to the operator
norm) such that Dt is p-summable for some 1 6 p <∞,∫1

0

∥∥∥(1 +D2
t)

−p2

∥∥∥
1
dt < +∞

and
G(D1) −

1
2
B1 −G(D0) +

1
2
B0 ∈ L1(M),

then

sf(D0,D1) =
1
cp

∫1

0

τ
(
Ḋt (1 +D2

t)
−p2

)
dt

+ τ

(
G(D1) −

1
2
B1 −G(D0) +

1
2
B0

)
,

where

cp =

∫+∞
−∞ (1 + x2)−p2 dx, G(x) =

1
cp

∫x
−∞(1 + t2)−p2 dt−

1
2

.

Compare this result with Theorem 9.3 of [11].
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5. DOUBLE OPERATOR INTEGRALS.

In this section, we shall briefly outline the theory of double operator integrals
(DOI) , developed recently in [19–21, 36, 37]. This theory unifies several different
approaches of harmonic analysis to smoothness properties of operator functions.
In the present section, we shall mostly present the results (proved somewhere
else) needed to complete the proof of Theorem 5 (see properties (a)–(g)) and those
needed in Section 6.

The theory of double operator integrals is a method of giving an integral rep-
resentation of the difference f(A) − f(B) where f is a bounded Borel function and
A and B are self adjoint. In the case when A,B are n × n matrices with spectral
representation A =

∑n
j=1 λjEj, B =

∑n
j=1 µkFk (here Ej and Fk denote spectral

projections) this integral representation is obtained from the following elementary
computation

f(A) − f(B) =

n∑
j,k=1

(f(λj) − f(µk))EjFk =

n∑
j,k=1

f(λj) − f(µk))

λj − µk
Ej(A− B)Fk.

In other words, we have just represented the difference f(A) − f(B) as the Stieltjes
double operator integral

∫ ∫ f(λ)−f(µ))
λ−µ Ej(A−B)Fk. Notice that we are making use

of the bimodule property of the n× n matrices. An exposition of an early version
of DOI which may assist the reader may be found in [38].

It is precisely the generalisation of this perturbation formula to infinite dimen-
sional analogues that constitutes the essence of the double operator integration
theory initiated by Daletskii and Krein and developed by Birman and Solomyak
for type I factors, and further extended to semifinite von Neumann algebras in
[17,18,16] and [31,32,34] to which we refer for additional historical information
and references.

Let M be a semi-finite von Neumann algebra and let τ be a n.s.f. trace. The
symbol E stands for a non-commutative fully8 symmetric ideal associated with
the couple (M, τ) (see [15, 22]). In particular, Lp, 1 6 p 6 ∞ stands for the non-
commutative Lp-Schatten ideal. Furthermore, the symbol E× stands for the Köthe
dual E× of a symmetric ideal E (see, [23]). In particular, if E = Lp, 1 6 p 6 ∞,
then E× = Lp

′
, where 1

p + 1
p′ = 1.

We shall let D0,D1 denote self adjoint unbounded operators affiliated with
M. Let dE0

λ, dE1
µ be the corresponding spectral measures. Recall that for every

K1,K2 ∈ L2

τ(K1 dE
0
λ K2 dE

1
µ), λ,µ ∈ R

is a σ-additive complex-valued measure on the plane R2 with the total variation
bounded by ‖K1‖2‖K2‖2, see [21, Remark 3.1].

Letφ = φ(λ,µ) be a bounded Borel function on R2. We call the functionφ dE0⊗
dE1-integrable in the symmetric ideal E, if and only if there is a linear operator Tφ =
Tφ(D0,D1) ∈ B(E) such that

τ(K1 Tφ(K2)) =

∫
R2
φ(λ,µ) τ(K1 dE

0
λ K2 dE

1
µ), (13)

for every

K1 ∈ L2 ∩ E× and K2 ∈ L2 ∩ E.

8We shall omit the word “fully” in the sequel.
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If the operator Tφ(D0,D1) exists, then it is unique, [21, Definition 2.9]. The latter
definition is in fact a special case of [21, Definition 2.9]. See also [21, Proposi-
tion 2.12] and the discussion there on pages 81–82. The operator Tφ is called the
Double Operator Integral.

We shall write φ ∈ Φ(E) if and only if the function φ is dE0 ⊗ dE1-integrable in
the symmetric ideal E for any measures dE0 and dE1.

Theorem 14 ( [20, 21]). Let D0,D1 be unbounded self adjoint operators affiliated to M.
The mapping

φ 7→ Tφ = Tφ(D0,D1) ∈ B(E), φ ∈ Φ(E)

satisfies Tφ∗ = T∗φ and Tφψ = TφTψ. Moreover, if α,β : R 7→ C are bounded Borel
functions and if φ(λ,µ) = α(λ) (resp. φ(λ,µ) = β(µ)), λ,µ ∈ R, then

Tφ(K) = α(D0)K (resp. Tφ(K) = Kβ(D1)), K ∈ E.

The latter result allows the construction of a sufficiently large class of functions
in Φ(E). Indeed, let us consider the class A0 which consists of all bounded Borel
functions φ(λ,µ), λ,µ ∈ R admitting the representation

φ(λ,µ) =

∫
S

αs(λ)βs(µ)dν(s) (14)

such that ∫
S

‖αs‖∞ ‖βs‖∞ dν(s) <∞,

where (S,dν) is a measure space, αs,βs : R 7→ C are bounded Borel functions, for
every s ∈ S and ‖ · ‖∞ is the operator norm. The space A0 is endowed with the
norm

‖φ‖A0 := inf
∫
S

‖αs‖∞ ‖βs‖∞ dν(s),
where the minimum runs over all possible representations (14). The space A0 to-
gether with the norm ‖ · ‖A0 is a Banach algebra, see [20] for details. The subspace
of A0 of all functionsφ admitting representation (14) with continuous functions αs
and βs is denoted by C0. The following result is a straightforward corollary of The-
orem 14.

Corollary 15 ( [20, Proposition 4.7]). Every φ ∈ A0 is dE0 ⊗ dE1-integrable in the
symmetric ideal E for any measures dE0, dE1, i.e. A0 ⊆ Φ(E). Moreover, if Tφ =
Tφ(D0,D1), for some self adjoint operators D0,D1, affiliated with M, then

‖Tφ‖B(E) 6 ‖φ‖A0 ,

for every φ ∈ A0.

The major benefit delivered by the double operator integral theory is the obser-
vation that, if D is a self adjoint linear operator affiliated with M and A is a self
adjoint perturbation from E, then the perturbation of the operator function f(D)
(where f : R 7→ C) is given by a double operator integral. Namely,

f(D+A) − f(D) = Tψf(A),

where Tψf := Tψf(D+A,D) ∈ B(E) and

ψf(λ,µ) =
f(λ) − f(µ)

λ− µ
, λ 6= µ, ψ(λ, λ) = f ′(λ). (15)

The identity above is proved in Theorem 17 below. The proof is based on the
following lemma which is a slight generalization of [21, Lemma 7.1]. The proof of
the lemma is a repetition of that of [21, Lemma 7.1] and therefore is omitted.
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Lemma 16. Let Dj be self adjoint linear operators affiliated with M with corresponding
spectral measures Ejn = EDj [−n,n], j = 0, 1, n = 1, 2, . . . . If

φ(λ1, λ0) =
β1(λ1)β0(λ0)

α1(λ1)α0(λ0)
ψf(λ1, λ0) ∈ Φ(E), (16)

where f is a Borel function and αj, βj are bounded Borel functions, then, for every K ∈ E,

E1
nβ1(D1) [f(D1)K− K f(D0)] β0(D0)E

0
n

= Tφ
(
E1
nα1(D1) [D1 K− KD0] α0(D0)E

0
n

)
.

Theorem 17. Let f be a Borel function and let αj and βj, j = 0, 1 be bounded Borel
functions. LetDj, j = 0, 1 be self adjoint linear operators affiliated with M and let A ∈M

be such that
B = α1(D1) [D1A−AD0] α0(D0) ∈M.

If φ ∈ Φ(M), where the function φ is given in (16), then

C = β1(D1) [f(D1)A−Af(D0)] β0(D0) ∈M

and
C = Tφ(B).

Proof. To be able to define the operator C, first we have to ensure that

Aβ0(D0)[dom(D0)] ⊆ dom(f(D1)β1(D1)). (17)

To this end, we shall consider the bilinear form

q(ξ,η) = 〈Aβ0(D0) ξ, β̄1(D1) f̄(D1)η〉
− 〈β1(D1)Aβ0(D0) f(D0) ξ,η〉, ξ ∈ dom(D0), η ∈ dom(D1).

Consider the spectral projections Ejn = EDj [−n,n]. Let

Bn = E1
n α1(D1) [D1A−AD0] α0(D0)E

0
n

and
Cn = E1

n β1(D1) [f(D1)A−Af(D0)] β0(D0)E
0
n.

We obtain from Lemma 16 that

Cn = Tφ(Bn).

Since the set of operators {Bn}n>1 is uniformly bounded and φ ∈ Φ(M), this im-
plies that the operators Cn are also uniformly bounded. Furthermore, we see that

lim
n→∞〈Cnξ,η〉 = q(ξ,η), ξ ∈ dom(D1), η ∈ dom(D0).

Consequently, the form q(ξ,η) is bounded and therefore we have (17). Thus, the
operator C is properly defined and bounded. Moreover, since dom(Dj), j = 0, 1
are dense in H, we also have that

wo− lim
n→∞Cn = C.

Observe that we also have that

wo− lim
n→∞Bn = B.

Since the operator Tφ is continuous with respect to the weak operator topology
(see [36, Lemma 2.4 and the proof of Proposition 2.6]), we finally obtain that

Tφ(B) = C.

�
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Remark 18. It is clearly seen from Theorem 17 that, if ψf ∈ Φ(M), then the func-
tion f maps (uniformly) operator norm continuous paths into themselves. On the
other hand, we know from [37, Theorem 4] that, for every function f : R 7→ C such
that

‖f‖Λθ + ‖f ′‖Λε < +∞, 0 6 θ < 1, 0 < ε 6 1,
we have ψf ∈ C0 ⊆ Φ(M). Here Λθ is the semi-norm on functions on R given by

‖f‖Λθ = sup
x1,x2

|f(x1) − f(x2)|

|x1 − x2|
.

Thus, in particular, every C2-function maps operator norm (respectively, trace
norm) continuous paths into operator norm (respectively, trace norm) continuous
paths.

Finally, we complete the proof of Theorems 5 and 3 by establishing the follow-
ing lemmas.

Lemma 19. Let g,h be compactly supported C2-functions on R such that g(x) = 1 for
every x from some neighbourhood of supph and let r 7→ γr be a weakly continuous group
of τ-invariant ∗-isomorphisms on M with the generator δ : dom(δ) 7→M, dom(δ) ⊆M.
If F,X ∈ M are self adjoint, then there are families of linear operators {Ts}, {T ′s} and {T ′′s }

uniformly bounded on M and on L1(M) such that
(a) Ts = T ′s + T ′′s ;
(b) T ′s(Y) = g(F+ srX) T ′s (Y), Y ∈M;
(c) T ′′s (Y) = T ′′s (Y) g(F), Y ∈M;
(d) h(F+ sX) − h(F) = Ts(sX);
(e) if F ∈ dom(δ) and limr→0 ‖γr(F) − F‖ = 0, then h(F) ∈ dom(δ) and δ(h(F)) =

T0(δ(F));
(f) τ(T0(Y)Z) = τ(YT0(Z)), Y,Z ∈M;
(g) lims→0 ‖T ′s(Y) − T ′0(Y)‖1 = lims→0 ‖T ′′s (Y) − T ′′0 (Y)‖1 = 0, Y ∈ L1(M).

Proof. We set Ts = Tψh(F + sX, F). It follows from [20, Corollary 7.6] (see also [37,
Theorem 4]) that ψh ∈ C0. Consequently, we readily see that (d) follows from [21,
Corollary 7.2] (or Theorem 17); and (f) — from [36, Lemma 2.4].

Let g1 be a compactly supported C2-function such that g1(x) = 1 when x ∈
supph and g(x) = 1 when x ∈ suppg1. We set

ψ1(λ,µ) = g1(λ)ψh(λ,µ) and ψ2 = ψh −ψ1.

We also set T ′s = Tψ1(F+ sX, F) and T ′′s = Tψ2(F+ sX, F). We instantly have (a).
Note that ψ1,ψ2 ∈ C0. Consequently, (g) follows from [20, Lemma 5.14].
We readily have from the construction that

ψ1(λ,µ) = g(λ)ψ1(λ,µ). (18)

Furthermore, it may be observed that we also have

ψ2(λ,µ) = ψ2(λ,µ)g(µ). (19)

Indeed, since the function h is compactly supported, the function ψh is supported
in the cross S1 ∪ S2 ⊆ R× R, where the strips Sj, j = 1, 2 are given by

S1 = {(λ,µ) : λ ∈ supph} , S2 {(λ,µ) : µ ∈ supph} .

By construction the function ψ1 coincides with ψh on the strip S1, i.e.

ψ1(λ,µ) = ψh(λ,µ), (λ,µ) ∈ S1.

Consequently, the function ψ2 = ψh − ψ1 is supported within S2 which justi-
fies (19).

Clearly, (b) and (c) follows from Theorem 14 and (18) and (19).
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Let us show (e) (we refer the reader to [19, 35] for a more complete study of the
connection between double operator integrals and domains of derivations). By
definition

F ∈ dom(δ) ⇐⇒ lim
t→0

τ

(
γt(F) − F

t
Y

)
= τ (δ(F) Y) , Y ∈ L1(M). (20)

From [21, Corollary 7.2], we obtain that

h(γt(F)) − h(F) = St(γt(F) − F),

where St = Tψh(γt(F), F). Observe also that the family {St} is different from {Ts}.
However, S0 = T0. Now,

τ

(
Y

[
γt(h(F)) − h(F)

t
− S0(δ(F))

])
= τ

(
Y S0

[
γt(F) − F

t
− δ(F)

])
+ τ

(
Y

[
(St − S0)

γt(F) − F

t

])
= τ

(
S∗0(Y)

[
γt(F) − F

t
− δ(F)

])
+ τ

(
(S∗t − S∗0)(Y)

γt(F) − F

t

)
.

Letting t→ 0, we see that the first term vanishes due to the fact that S∗0 is bounded
on L1(M) (see [36, Lemma 2.4]) and F ∈ dom(δ). Noting that the dual9 family {S∗t}

is a family of double operator integrals bounded on L1(M) (see [36, Lemma 2.4])
and the family {

γt(F) − F

t

}
is uniformly bounded with respect to the operator norm (see (20)), the second
term vanishes due to [20, Lemma 5.14]. Thus, according to (20) h(F) ∈ dom(δ)
and δ(h(F)) = T0(δ(F)). �

Lemma 20. Let φ ∈ C0 such that φ(λ,µ) = φ(µ, λ), λ,µ ∈ R and such that φ is
supported in a square I × I, where I is an interval. Let D be a linear self adjoint operator
affiliated with M and let T = Tφ(D,D) be a double operator integral (see [20]) which is a
bounded linear operator on M. If E = χI(D) is τ-finite, then, for every V ∈M,

τ (T(V)) = τ (f(D)V) , where f(λ) = φ(λ, λ). (21)

Proof. Observe first that
T(1) = f(D). (22)

Indeed, if φ ∈ C0, then there is a measure space (S,ν) and continuous functions αs
and βs, s ∈ S, such that

φ(λ,µ) =

∫
S

αs(λ)βs(µ)dν(s)

and

T(A) =

∫
S

αs(D)Aβs(D)dν(s), A ∈M,

where ∫
S

‖αs‖∞ ‖βs‖∞ dν(s) < +∞.

Consequently, (22) follows from

T(1) =

∫
S

αs(D) 1βs(D)dν(s) = f(D).

9Here, we consider dual operator S∗t restricted on L1(M) ⊆M∗, see details in [36].
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Since the operator T is self-dual (see [36, Lemma 2.4]), we obtain that

τ (f(D)V) = τ (f(D)EV) = τ (T(1)EV) = τ (T(EV)) = τ (T(V)) ,

where the last identity follows from Theorem 14. �

6. PATHS OF SELF ADJOINT LINEAR OPERATORS SMOOTH IN GRAPH NORM.

As we observed in Section 4, analytic spectral flow formulae for paths of un-
bounded self adjoint linear operators are deduced from corresponding formulae
for paths of bounded Fredholm operators via the mapping D 7→ ϑ(D), where the
function ϑ is given in (10). Consequently, the question of smoothness properties
of this mapping become of significant importance. This question has been studied
deeply in [10, 11, 14, 37, 40, 42].

The main result of the present Section is that the function x 7→ ϑ(x) maps C1
Γ -

paths onto C1-paths with respect to the operator norm (see Theorem 22). This
answers the question asked in [42, p. 21]. The proof is based on the following
observation, which is a development of the technique presented in [37]. For every
pair of self adjoint operators Dj, j = 0, 1, such that D1 − D0 ∈ B(H) there is a
linear10 operator T on B(H) such that

F1 − F0 = T
[
(D1 −D0) (1 +D2

0)
− 1

2

]
, (23)

where the operators Fj are given11 by Fj = ϑ(Dj), j = 0, 1. In the present section,
we shall further develop the above construction under the weaker assumption
that dom(D0) ⊆ dom(D1) and the operator

(D1 −D0) (1 +D2
0)

− 1
2

is bounded which is equivalent to the operator D1 − D0 being bounded with re-
spect to the graph norm of the operator D0 (see Lemma 23 below).

Now let us state the two major results of the present Section.

Theorem 21. If {Dt} is a collection of self adjoint operators Γ -differentiable (see Defini-
tion 8) at the point t = 0, then the collection {Ft}, Ft = ϑ(Dt) is differentiable with respect
to the operator norm at the point t = 0.

Theorem 22. If t ∈ [0, 1] 7→ Dt is a C1
Γ -path (see Definition 8) of self adjoint linear

operators, then t ∈ [0, 1] 7→ ϑ(Dt) is a C1-path with respect to the operator norm, where
the function ϑ is given by (10).

6.1. D-bounded operators. Let H be Hilbert space and let D : dom(D) 7→ H be a
linear operator with the domain dom(D) ⊆ H. A linear operator A : dom(A) 7→ H

(dom(A) ⊆ H) is calledD-bounded if and only if dom(D) ⊆ dom(A) and there is a
constant c > 0 such that

‖A(ξ)‖H 6 c
(
‖ξ‖2H + ‖D(ξ)‖2H

) 1
2

, ξ ∈ dom(D). (24)

We let ‖A‖D be the smallest possible constant c > 0 such that (24) holds.

10In the present section, we shall consider only the operator norm. Hence, we do not need an
abstract von Neumann algebra. Instead, B(H) will suffice.

11When the operator D1 − D0 is bounded and the resolvent of D0 is E-summable (i.e.,(
1 +D2

0

)− 1
2 ∈ E), then, since the operator T is bounded on the space E, the identity (23) yields that

‖F1 − F0‖E 6 c ‖D1 −D0‖
∥∥∥(1 +D2

0)− 1
2

∥∥∥
E

.

The latter is proved in [37, Theorem 17] for an arbitrary symmetric ideal E.
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Observe that if an operator A is D0-bounded and ‖A‖D0
< 1, then the opera-

tor A is alsoD-bounded, whereD = A+D0. Indeed, suppose that 0 < c < 1 is the
constant such that (24) holds. It then follows that

‖A(ξ)‖H 6 c (‖ξ‖H + ‖D0(ξ)‖H) 6 c (‖ξ‖H + ‖D(ξ)‖H + ‖A(ξ)‖H) .

This implies that

‖A(ξ)‖H 6
c

1 − c
(‖ξ‖H + ‖D(ξ)‖H) 6

c
√

2
1 − c

(
‖ξ‖2H + ‖D(ξ)‖2H

) 1
2

.

In other words,

‖A‖D 6
√

2 ‖A‖D0

1 − ‖A‖D0

. (25)

Furthermore, if Dj : dom(Dj) 7→ H, j = 0, 1 and A : dom(A) 7→ H are linear
operators and ‖D1 −D0‖D0

< 1, then A is D0-bounded if and only if A is D1-
bounded. Indeed, firstly since D1 − D0 is D0-bounded, we see that dom(D0) =
dom(D1). Secondly, according to (25), D1 −D0 is also D1-bounded. Finally, if c is
the D0-norm of A and c ′ is the D1-norm of D1 −D0, then

‖A(ξ)‖H 6 c (‖ξ‖H + ‖D0(ξ)‖H)

6 c (‖ξ‖H + ‖D1(ξ)‖H + ‖(D1 −D0)(ξ)‖H)

6 c (‖ξ‖H + ‖D1(ξ)‖H + c ′ (‖ξ‖H + ‖D1(ξ)‖H))

6
√

2 c (1 + c ′)
(
‖ξ‖2H + ‖D1(ξ)‖2H

) 1
2

, ξ ∈ dom(D0).

Thus, if A is D0-bounded then A is D1-bounded. The opposite implication is sim-
ilar. In other words, we proved that

c1 ‖A‖D0
6 ‖A‖D1

6 c2 ‖A‖D0
, (26)

where c1 and c2 are positive constants depending on ‖D1 −D0‖D0
< 1.

Lemma 23. LetD : dom(D) 7→ H be a self adjoint linear operator and letA : dom(A) 7→
H be a linear operator such that dom(D) ⊆ dom(A). The following are equivalent:

(i) A is D-bounded;
(ii) A (i+D)−1 and A (−i+D)−1 are bounded;

(iii) A (1 +D2)− 1
2 is bounded.

Proof. From (i) to (ii). If c > 0 is a constant such that (24) holds, then, since

(±i+D)−1
(H) ⊆ dom(D),

we have that∥∥A (±i+D)−1(ξ)
∥∥

H

6 c
(∥∥(±i+D)−1(ξ)

∥∥2

H
+
∥∥D (±i+D)−1(ξ)

∥∥2

H

) 1
2

6 c
√

2 ‖ξ‖H , ξ ∈ H.

This means that the operator A (±i+D)−1 is bounded.
From (ii) to (i). Let c =

∥∥A (±i+D)−1
∥∥ < +∞. We instantly obtain that

‖A(ξ)‖H =
∥∥A (±i+D)−1(±i+D)(ξ)

∥∥
H

6 c ‖(±i+D)(ξ)‖H 6 c (‖ξ‖H + ‖D(ξ)‖H)

6 c
√

2
(
‖ξ‖2H + ‖D(ξ)‖2H

) 1
2

, ξ ∈ dom(D),

which means that A is D-bounded.
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The equivalence of (ii) and (iii) follows from the fact that the operators

(±i+D)(1 +D2)− 1
2 and (1 +D2)

1
2 (±i+D)−1

are unitary. �

Remark 24. It follows from the proof of Lemma 23 that

1√
2
‖A‖D 6

∥∥∥A (1 +D2)− 1
2

∥∥∥ 6 √2 ‖A‖D .

Observe that, according to Lemma 23 and Remark 24, a path t 7→ Dt is Γ -
differentiable at the point t = 0 (as defined in Section 4) if and only if dom(D0) ⊆
dom(Dt) in some neighbourhood of t = 0 and

lim
t→0

∥∥∥∥Dt −D0

t
− Ḋ0

∥∥∥∥
D0

= 0,

in other words, if and only if the path t 7→ Dt is differentiable with respect to the
graph norm of the operatorD0 at the point t = 0. This observation further extends
to

6.2. The subspace L(D). Recall that an operator A : dom(A) 7→ H is called sym-
metric if and only if

〈A(ξ),η〉 = 〈ξ,A(η)〉, ξ,η ∈ dom(A).

LetD : dom(D)→ H be a self adjoint linear operator and let L(D) be the real linear
space consisting of all symmetric A : dom(A) 7→ H where dom(D) ⊆ dom(A) and
such that12 A (1 +D2)− 1

2 ∈ B(H).
Next, observe that, sinceA is symmetric and (1+D2)− 1

2 is self adjoint, we have

〈(1 +D2)− 1
2A(ξ),η〉 = 〈A(ξ), (1 +D2)− 1

2 (η)〉 = 〈ξ,A (1 +D2)− 1
2 (η)〉.

Consequently, we have the implication

A (1 +D2)− 1
2 ∈ B(H) =⇒ (1 +D2)− 1

2A ∈ B(H). (27)

More precisely, if the operator A (1 + D2)− 1
2 is bounded, then the operator (1 +

D2)− 1
2A is closable and its closure is also bounded.

Lemma 25. L(D) is a closed subspace of B(H).

Proof. We prove that the subspace L(D) is closed with respect to the weak operator
topology. Let Bn ∈ L(D), n > 1, and

wo− lim
n→∞Bn = B ∈ B(H).

This means that there is a sequence An of symmetric operators such that

Bn = An(1 +D2)− 1
2 and dom(D) ⊆ dom(An).

We need to show that B ∈ L(D). Introduce the operator A : dom(A) 7→ H by
setting

dom(A) = dom(D) and A = B (1 +D2)
1
2 .

We clearly have that the operatorA (1+D2)− 1
2 is closable and its closure coincides

with B i.e.,
B = A (1 +D2)− 1

2 .

12HereA (1 +D2)− 1
2 ∈ B(H) means that the operatorA (1 +D2)− 1

2 is closable and the closure
belongs to B(H).



26 A. CAREY, D. POTAPOV, AND F. SUKOCHEV

Consequently, we have only to verify that the operator A is symmetric. To this
end, observe that

〈A(ξ),η〉 = 〈B (1 +D2)
1
2 (ξ),η〉

= lim
n→∞〈Bn (1 +D2)

1
2 (ξ),η〉

= lim
n→∞〈An(ξ),η〉

= lim
n→∞〈ξ,An(η)〉

= lim
n→∞〈ξ,Bn (1 +D2)

1
2 (η)〉

= 〈ξ,B (1 +D2)
1
2 (η)〉

= 〈ξ,A(η)〉, ξ,η ∈ dom(A).

Thus, A is symmetric and therefore B ∈ L(D). �

For a closely related argument to the following see [29].

Lemma 26. Let Dj : dom(Dj) 7→ H, j = 0, 1 be a self adjoint linear operator and
let B ∈ L(D0). If D1−D0 isD0-bounded and ‖D1 −D0‖D0

< 1, then the operator Bθ =

(1 +D2
1)

−θ2 B (1 +D2
0)
θ
2 is bounded and

‖Bθ‖ 6 c0 ‖B‖ ,

for some constant c0 > 0 and every 0 6 θ 6 1.

Proof. Let A : dom(A) 7→ H be a symmetric linear operator such that

B = A (1 +D2
0)

− 1
2 ∈ B(H). (28)

In particular,
dom(D0) ⊆ dom(A).

The operator A is D0-bounded (see Lemma 23). According to (26), the operator A
is also D1-bounded. This further means (using (27) and Lemma 23) that

(1 +D2
1)

− 1
2A ∈ B(H). (29)

Let Ejn = EDj(−n,n) be the spectral projection of the operator Dj, j = 0, 1. The
operator E1

nAE
0
n is bounded since

E1
nAE

0
n = E1

n B (1 +D2
0)

1
2 E0

n.

Let
Cθ,n = (1 +D2

1)
−θ2 E1

nBE
0
n(1 +D2

0)
θ
2 .

We clearly have that

lim
n→∞〈Cθ,n(ξ),η〉 = 〈Bθ(ξ),η〉, ξ ∈ dom(D0), η ∈ dom(D1).

Thus, it is sufficient to show that the operators Cn,θ are uniformly bounded with
respect to n. This follows from (28), (29) and Lemma 27 below. �

Lemma 27. Let A, Bj, j = 0, 1 be bounded linear operators. If Bj, j = 0, 1 are positive,
then the operator B1−θ

1 ABθ0 is bounded and∥∥B1−θ
1 ABθ0

∥∥ 6 ‖B1A‖1−θ ‖AB0‖θ , 0 6 θ 6 1. (30)

Proof. The lemma is a straightforward application of the three lines lemma (see [7,
Lemma 1.1.2]) to the holomorphic function

fξ,η(z) = ‖B1A‖−1+z ‖AB0‖−z 〈B1−z
1 ABz0(ξ),η〉, ξ,η ∈ H,

considered in the strip S = {z ∈ C : 0 < <z < 1}. �
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6.3. The proof of Theorems 21 and 22. The proof of Theorems 21 and 22 rests on
the properties of the operator Tφ(D1,D0) where the function φ is given by

φ(λ,µ) =
ϑ(λ) − ϑ(µ)

λ− µ
(1 + µ2)

1
2 . (31)

The difficulty about this operator is the fact that it is not bounded on B(H). Thus,
a direct application of the methods of double operator integrals and harmonic
analysis is not feasible. Nevertheless, we shall show that this operator, when con-
sidered on the subspace L(D0), is bounded and possesses all the properties needed
to prove Theorems 21 and 22.

LetDj : dom(Dj) 7→ H, j = 0, 1 be a self adjoint linear operator such thatD1−D0

is D0-bounded and ‖D1 −D0‖D0
6 1

2 . In order to introduce the operator Tφ =

Tφ(D1,D0) : L(D0) 7→ B(H) (φ is given in (31)), let us consider another function

ψ(λ,µ) = (1 + λ2)
1
4
ϑ(λ) − ϑ(µ)

λ− µ
(1 + µ2)

1
4 . (32)

The operator Tψ = Tψ(D1,D0) is bounded on B(H), (Tψ is equal to the operator Tθ
with θ = 1

2 introduced in the proof of [37, Theorem 14]). Observe also that the
bound of operator Tψ does not depend of the operators Dj, j = 0, 1.

The fact that the operator Tψ is bounded on B(H) and Lemma 26 imply that the
mapping

B ∈ L(D0) 7→ Tψ((1 +D2
1)

− 1
4B (1 +D2

0)
1
4 ) ∈ B(H) (33)

is a bounded linear operator L(D0) 7→ B(H) whose norm depends only on the
quantity ‖D1 −D0‖D0

. Furthermore, it is known (see [36], see also [35] for a
more complete and detailed exposition) that the operators Tφ and Tψ are bounded
from L2 7→ L2, where L2 ⊆ B(H) is the Hilbert-Schmidt ideal and the following
identity holds

Tφ(B) (1 +D2
0)

− 1
4 = (1 +D2

1)
− 1

4 Tψ(B), B ∈ L2.
The latter identity suggests that the mapping (33) is a (unique) bounded exten-
sion of the operator Tφ from L2 ∩ L(D0) to the space L(D0). Motivated by this
observation, we shall write Tφ = Tφ(D1,D0) for the mapping (33).

Proof of Theorem 21. Let Tφ,t = Tφ(Dt,D0) and let H = Tφ,0(G) where G = Ḋ0 (1 +

D2
0)

− 1
2 (observe that the subspace L(D0) is closed in B(H) and therefore G ∈

L(D0)). It now follows from Theorem 17 that

Ft − F0

t
−H = Tφ,t

(
Dt −D0

t
(1 +D2

0)
− 1

2 −G

)
+ (Tφ,t(G) − Tφ,0(G)) .

When t→ 0, the first term vanishes due to assumptions of the theorem and the fact
that the operators Tφ,t are uniformly bounded. To finish the proof of the theorem,
we need to justify that

lim
t→0
‖Tφ,t(G) − Tφ,0(G)‖ = 0. (34)

Letting Tψ,t = Tψ(Dt,D0) and

Ct = (1 +D2
t)

− 1
4G (1 +D2

0)
1
4 ,

we infer (via (33)) that

Tφ,t(G) − Tφ,0(G) = Tψ,t(Ct) − Tψ,0(C0) = Tψ,t(Ct −C0) + (Tψ,t(C0) − Tψ,0(C0)).

Observing that Tψ,t are uniformly bounded, we see that it is sufficient to show

lim
t→0
‖Ct − C0‖ = 0 and lim

t→0
‖Tψ,t(C0) − Tψ,0(C0)‖ = 0. (35)
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The first limit in (35) is due to the following identity

Ct − C0 =(1 +D2
t)

− 1
4G (1 +D2

0)
1
4 − (1 +D2

0)
− 1

4G (1 +D2
0)

1
4

=
(
(1 +D2

t)
− 1

4 (1 +D2
0)

1
4 − 1

)
C0

and the following estimate (see Lemma 28.(i) below)∥∥∥(1 +D2
t)

− 1
4 (1 +D2

0)
1
4 − 1

∥∥∥ 6 c0

∥∥∥ (Dt −D0) (1 +D2
0)

− 1
2

∥∥∥ . (36)

For the second limit in (35), observe that the operator Tψ,t is precisely the oper-
ator Tψ,t introduced in the proof of [37, Theorem 21]. Thus, the required limit
follows from [37, Formula (6.8)] and the estimate (see Lemma 28.(ii) below)∥∥∥(1 +D2

t)
is
2 − (1 +D2

0)
is
2

∥∥∥ 6 c0

∥∥∥ (Dt −D0) (1 +D0)
− 1

2

∥∥∥ , |s| 6 s0, (37)

for some constant c0 > 0 which may depend on s0. The latter estimate is an
improvement of [37, Formula (6.16)]. The proof of the theorem is finished. �

Proof of Theorem 22. The proof is similar to the proof of Theorem 21. Indeed, let-
ting Tφ,t,s = Tφ(Dt,Ds) (φ is given in (31)), we obtain

Ht −H0 = Tφ,t,t(Gt) − Tφ,0,0(G0) = Tφ,t,t(Gt) − Tφ,t,t(G0)

+ Tφ,t,t(G0) − Tφ,t,0(G0)

+ Tφ,t,0(G0) − Tφ,0,0(G0).

The first term vanishes since the operators Tφ,t,t are uniformly bounded and the
assumption of the theorem; the last one does due to (34). To finish the proof, we
need to show that

lim
t→0
‖Tφ,t,t(G0) − Tφ,t,0(G0)‖ = 0.

Let Tψ,t,s = Tψ(Dt,Ds), where the function ψ is given in (32) and let

Ct,s = (1 +D2
t)

− 1
4G0 (1 +D2

s)
1
4 ∈ B(H).

It then follows from the definition of the operator Tφ,t,s that

Tφ,t,t(G0) − Tφ,t,0(G0) = Tψ,t,t(Ct,t) − Tψ,t,0(Ct,0)

= Tψ,t,0(Ct,0 − C0,0) + Tψ,t,t(Ct,t − C0,0)

+ Tψ,t,t(C0,0) − Tψ,t,0(C0,0). (38)

The first term vanishes due to the fact that the operators Tψ,t,s are uniformly
bounded and (35). For the last term in (38), observe that the operator Tψ,t,s is
the operator T̄t,s introduced in the proof of [37, Theorem 21]. Therefore, the last
term in (38) vanishes due to [37, Formula (6.11)] and the estimate (37). Thus, to
finish the proof of the theorem, we need only justify that

lim
t→0
‖Ct,t − C0,0‖ = 0. (39)

For the latter, observe that

Ct,t − C0,0 =(1 +D2
t)

− 1
4G0 (1 +D2

t)
1
4 − (1 +D2

0)
− 1

4G0 (1 +D2
0)

1
4

=Ct,t

(
1 − (1 +D2

t)
− 1

4 (1 +D2
0)

1
4

)
+
(
(1 +D2

t)
− 1

4 (1 +D2
0)

1
4 − 1

)
C0,0.

It is now clear that (39) follows from (36) and the fact that the operators Ct,t are
uniformly bounded. The proof of the theorem is finished. �

Lemma 28. LetDj : dom(Dj) 7→ H, j = 0, 1 be a linear self adjoint operator. IfD1 −D0

is D0-bounded and ‖D1 −D0‖D0
6 1

2 , then
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(i) there is a constant c0 > 0 such that∥∥∥(1 +D2
1)

− 1
4 (1 +D2

0)
1
4 − 1

∥∥∥ 6 c0

∥∥∥ (D1 −D0) (1 +D2
0)

− 1
2

∥∥∥ ;

(ii) for every s0 > 0, there is a constant c1 > 0 such that∥∥∥(1 +D2
1)
is
2 − (1 +D2

0)
is
2

∥∥∥ 6 c1

∥∥∥ (D1 −D0) (1 +D2
0)

− 1
2

∥∥∥ , |s| 6 s0.

Proof. (i) Let us set Gj = (1 +D2
j )

1
2 , j = 0, 1 for brevity. By Lemma 26, we have∥∥∥G− 3

4
1 (D1 −D0)G

− 1
4

0

∥∥∥ 6 c0

∥∥ (D1 −D0)G
−1
0

∥∥ .

Thus, it is sufficient to show that∥∥∥G− 1
2

1 G
1
2
0 − 1

∥∥∥ 6 c0

∥∥∥G− 3
4

1 (D1 −D0)G
− 1

4
0

∥∥∥ .

Consider the function

η(λ1, λ0) = γ
3
4
1

γ
− 1

2
1 γ

1
2
0 − 1

λ1 − λ0
γ

1
4
0 , γj = (1 + λ2

j )
1
2 , j = 0, 1. (40)

Suppose that η ∈ Φ(B(H)). The required estimate then follows from Theorem 17
which guarantees the identity

G
− 1

2
1 G

1
2
0 − 1 = Tη(G

− 3
4

1 (D1 −D0)G
− 1

4
0 ),

where Tη = Tη(D1,D0). Thus, to finish the proof of (i) we need show that η ∈
Φ(B(H)). This is justified by [37, Lemmas 7 and 9] and the following representa-
tion of the function η given in (40)

η(λ1, λ0) =
λ1

γ1
f

(
γ0

γ1

)
+
λ0

γ0
f

(
γ1

γ0

)
,

where the function f is given by

f(t) = (1 + t)
−1
(
t

1
4 + t−

1
4

)−1

, t > 0.

(ii) We keep the notations of the proof above. Let s0 be fixed. Referring to
Lemma 26 again, we need only show that∥∥Gis1 −Gis0

∥∥ 6 c0

∥∥∥G− 1
2

1 (D1 −D0)G
− 1

2
0

∥∥∥ .

Let

ζ(λ1, λ0) = γ
1
2
1

γis1 − γis0
λ1 − λ0

γ
1
2
0 .

If ζ ∈ Φ(B(H)), then we have the identity (see Theorem 17)

Gis1 −Gis0 = Tζ

(
G

− 1
2

1 (D1 −D0)G
− 1

2
0

)
,

where Tζ = Tζ(D1,D0) and (ii) follows. Thus, we need to establish that ζ ∈
Φ(B(H)). To this end, note that the latter function admits the representation

ζ(λ1, λ0) = γ
is
2

1 γ
is
2

0

[
λ1

γ1
f

(
γ0

γ1

)
+
λ0

γ0
f

(
γ1

γ0

)]
,

where the function f is given by

f(t) =
t
is
2 − t−

is
2

(1 + t)
(
t

1
4 − t−

1
4

) .
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This, together with [37, Lemmas 7 and 9], implies that ζ ∈ Φ(B(H)) (with the norm
depending on s). The proof of the lemma is finished. �

7. APPENDIX

Homotopical equivalence between F∗ and F±1
∗ . We regard the sets F∗ and F±1

∗
as topological spaces endowed with norm topology.

Theorem 29. The space F±1
∗ is a deformation retract of the space F∗ i.e., there is a con-

tinuous mapping r : [0, 1]× F∗ 7→ F∗ such that
(i) r(0, F) = F, F ∈ F∗;

(ii) r(1, F) ∈ F±1
∗ , F ∈ F∗;

(iii) r(1, F) = F, F ∈ F±1
∗ .

Proof. Recall that K is the two-sided ideal of all τ-compact operators of M and π is
the homomorphism

π : M 7→M/K.

Also recall that if F is a self-adjoint τ-Fredholm operator and δF =
∥∥π(F)−1

∥∥−1,
then, for every 0 6 δ < δF, the spectral projection EF(−δ, δ) is τ-finite (see Lemma 2)
i.e.,

τ
(
EF(−δ, δ)

)
< +∞, 0 6 δ < δF.

Consider the intermediate space F±1
∗ ⊆ F ′∗ ⊆ F∗ of all τ-Fredholm operators F

such that the projection EF(−δ, δ) is τ-finite, for every 0 6 δ < 1. Clearly, it is suffi-
cient to show that F ′∗ is a deformation retract of F∗ and that F±1

∗ is a deformation
retract of F ′∗.

Observing that the function F 7→
∥∥π(F)−1

∥∥ is continuous, we see that the defor-
mation retract between F∗ and F ′∗ is given by the mapping

r1(t, F) = F
(
1 − t+ t

∥∥π(F)−1
∥∥)−1 ∈ F∗, 0 6 t 6 1.

To construct the deformation retract between F ′∗ and F±1
∗ , let us consider the

continuous function χ(t) which is constantly 1 for t > 1, constantly −1 for t 6 −1
and linear for −1 6 t 6 1. The function χ is given by

χ(t) =
1
2

|t+ 1| −
1
2

|t− 1| .

Observe that the mapping F 7→ χ(F) is continuous in the norm topology (see [8,
Theorem X.2.1]). Observe also that χ(F) ∈ F±1

∗ , for every F ∈ F ′∗. Indeed, let us
fix F ∈ F ′∗ and let F1 = χ(F). Clearly, ‖F1‖ 6 1. To see that 1 − F2

1 is τ-compact,
consider the points δn = 1 − 1

n , n = 1, 2, . . . , and the projections

En = EF(−δn+1, −δn] + EF[δn, δn+1).

Observe that, since F ∈ F ′∗, the projection En is τ-finite, for every n = 1, 2, . . . .
Noting that

EF(−1, 1) = EF1(−1, 1) and (1 − F2
1)E

F1 {±1} = 0,
we obtain that

1 − F2
1 = (1 − F2

1)E
F(−1, 1) = (1 − F2

1)

∞∑
n=1

En =

∞∑
n=1

(1 − F2
1)En 6

∞∑
n=1

2
n
En.

The latter means that the operator 1 − F2
1 is τ-compact. Thus, we may define the

deformation retract between F ′∗ and F±1
∗ by setting

r2(t, F) = (1 − t) F+ t χ(F) ∈ F ′∗, 0 6 t 6 1.

The theorem is proved. �
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