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binary cubic forms that are reducible over Q and discuss some applications.
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1. Introduction

This paper is motivated by the well-known problem of studying the average order
of the divisor function τ(n) =

∑
d|n 1, as it ranges over the values taken by poly-

nomials. Our focus is upon the case of binary forms C ∈ Z[x1, x2] of degree 3, the
treatment of degree 1 or 2 being essentially trivial.

We wish to understand the behaviour of the sum

T (X;C) =
∑

x1,x26X

τ(C(x1, x2)),

as X → ∞. The hardest case is when C is irreducible over Q with non-zero dis-
criminant, a situation first handled by Greaves [7]. He establishes the existence of
constants c0, c1 ∈ R, with c0 > 0, such that

T (X;C) = c0X
2 logX + c1X

2 +Oε,C(X2− 1
14+ε),

for any ε > 0. Here, as throughout our work, any dependence in the implied constant
will be indicated explicitly by an appropriate subscript. This was later improved by
Daniel [4], who sharpened the exponent 2− 1

14 + ε to 2− 1
8 + ε. Daniel also achieves

asymptotic information about the sum associated to irreducible binary forms of
degree 4, which is at the limit of what is currently possible.

Our aim is to investigate the corresponding sums T (X) = T (X;L1L2L3)
when C is assumed to factorise as a product of linearly independent linear forms
L1, L2, L3 ∈ Z[x1, x2]. In doing so we will gain a respectable improvement in the
quality of the error term apparent in the work of Greaves and Daniel. The following
result will be established in §4.
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Theorem 1. For any ε > 0 there exist constants c0, . . . , c3 ∈ R, with c0 > 0, such
that

T (X) =
3∑
i=0

ciX
2(logX)3−i +Oε,L1,L2,L3(X

2− 1
4+ε).

Our proof draws heavily on a series of joint papers of the author with la
Bretèche [2, 3]. These involve an analysis of the more exacting situation wherein
τ(L1L2L3) is replaced by r(L1L2L3L4) or τ(L1L2Q), for an irreducible binary qua-
dratic form Q.

One of the motivations for studying the divisor problem for binary forms is
the relative lack of progress for the divisor problem associated to polynomials in a
single variable. It follows from work of Ingham [8] that∑

n6X

τ(n)τ(n+ h) ∼ 6
π2
σ−1(h)X(logX)2

as X → ∞, for given h ∈ N. Exploiting connections with Kloosterman sums, Es-
termann [6] obtained a cleaner asymptotic expansion with a reasonable degree of
uniformity in h. Several authors have since revisited this problem achieving asymp-
totic formulae with h in an increasingly large range compared to X. The best results
in the literature are due to Duke, Friedlander and Iwaniec [5] and to Motohashi [9].

A successful analysis of the sum

Th(X) =
∑
n6X

τ(n− h)τ(n)τ(n+ h),

has not yet been forthcoming for a single positive integer h. It is conjectured that
Th(X) ∼ chX(logX)3 as X →∞, for a suitable constant ch > 0. A straightforward
heuristic analysis based on the underlying Diophantine equations suggests that one
should take

ch =
11
8
f(h)

∏
p

(
1− 1

p

)2(
1 +

2
p

)
, (1.1)

where f is given multiplicatively by f(1) = 1 and

f(pν) =

{
(1 + 2

p )
−1(1− 1

p )
−2(1 + 4

p + 1
p2 −

3ν+4
pν+1 − 4

pν+2 + 3ν+2
pν+3 ), if p > 2,

52
11 −

41+15ν
11×2ν , if p = 2,

(1.2)
for ν > 1. In the following result we provide some support for this expectation.

Theorem 2. Let ε > 0 and let H > X
3
4+ε. Then we have∑

h6H

(
Th(X)− chX(logX)3

)
= o(HX(logX)3).

This result will be established in §5, where we will see that HX(logX)3 rep-
resents the true order of magnitude of the two sums on the left hand side. It would
be interesting to reduce the lower bound for H assumed in this result.

Throughout our work it will be convenient to reserve i, j for generic distinct
indices from the set {1, 2, 3}. For any h ∈ N3, we let

Λ(h) = {x ∈ Z2 : hi | Li(x)}, (1.3)

%(h) = #
(
Λ(h) ∩ [0, h1h2h3)2

)
. (1.4)

It is clear that Λ(h) defines an integer sublattice of rank 2. In what follows let R
always denote a compact subset of R2 whose boundary is a piecewise continuously
differentiable closed curve with length

∂(R) 6 sup
x∈R

max{|x1|, |x2|}.
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This is in contrast to our earlier investigations [2, 3], where a hypothesis of this sort
is automatically satisfied by working with closed convex subsets of R2. Let d,D ∈ N3

such that di | Di. We shall procure Theorems 1 and 2 through an analysis of the
auxiliary sum

S(X;d,D) =
∑

x∈Λ(D)∩XR

τ
(L1(x)

d1

)
τ
(L2(x)

d2

)
τ
(L3(x)

d3

)
, (1.5)

where XR = {Xx : x ∈ R}. We will also assume that Li(x) > 0 for x ∈ R.
Before revealing our estimate for S(X;d,D) we will first need to introduce

some more notation. We write

L∞ = L∞(L1, L2, L3) = max{‖L1‖, ‖L2‖, ‖L3‖}, (1.6)

where ‖Li‖ denotes the maximum modulus of the coefficients of Li. We will set

r∞ = r∞(R) = sup
x∈R

max{|x1|, |x2|}, (1.7)

r′ = r′(L1, L2, L3,R) = max
16i63

sup
x∈R

{Li(x)}. (1.8)

These are positive real numbers by assumption. Furthermore, let D = D1D2D3 and
let δ(D) ∈ N denote the largest δ ∈ N for which Λ(D) ⊆ {x ∈ Z2 : δ | x}. Bearing
this notation in mind we will establish the following result in §2 and §3.

Theorem 3. Let ε > 0 and let θ ∈ ( 1
4 , 1). Assume that r′X1−θ > 1. Then there

exists a polynomial P ∈ R[x] of degree 3 such that

S(X;d,D) = vol(R)X2P (logX)

+Oε

(DεL2+ε
∞ rε∞

δ(D)
(
r∞r

′ 34 + r2∞
)
X

7
4+ε

)
,

where the coefficients of P have modulus Oε(DεLε∞r
ε
∞(1 + r′−1)ε(detΛ(D))−1).

Moreover, the leading coefficient of P is C =
∏
p σp(d,D), with

σp(d,D) =
(
1− 1

p

)3 ∑
ν∈Z3

>0

%(pN1 , pN2 , pN3)
p2N1+2N2+2N3

(1.9)

and Ni = max{vp(Di), νi + vp(di)}.

While the study of the above sums is interesting in its own right, it turns
out that there are useful connections to conjectures of Manin and his collaborators
[1] concerning the growth rate of rational points on Fano varieties. Consider for
example the bilinear hypersurface

Ws : x0y0 + · · ·+ xsys = 0

in Ps×Ps. This defines a flag variety and it can be embedded in Ps(s+2) via the Segre
embedding φ. Let Us ⊂ Ws be the open subset on which xiyj 6= 0 for 0 6 i, j 6 n.
If H : Ps(s+2)(Q) → R>0 is the usual exponential height then we wish to analyse
the counting function

N(B) = #{v ∈ Us(Q) : H(φ(v)) 6 B}

=
1
4
#{(x,y) ∈ Zs+1

∗ × Zs+1
∗ : max |xiyj |s 6 B, x.y = 0},

as B → ∞, where Zk∗ denotes the set of primitive vectors in Zk with non-zero
components. It follows from work of Robbiani [10] that there is a constant cs > 0
such thatN(B) ∼ csB logB, for s > 3, which thereby confirms the Manin conjecture
in this case. This is established using the Hardy–Littlewood circle method. Spencer
[11] has given a substantially shorter treatment, which also handles the case s = 2.
By casting the problem in terms of a restricted divisor sum in §6, we will modify
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the proof of Theorem 3 to provide an independent proof of Spencer’s result in the
case s = 2.

Theorem 4. For s = 2 we have N(B) = cB logB +O(B), with

c =
12
ζ(2)2

∏
p

(
1 +

1
p

)−1(
1 +

1
p

+
1
p2

)
.

2. Theorem 3: special case

Our proof follows the well-trodden paths of [2, §4] and [3, §§5,6]. We will begin by
establishing a version of Theorem 3 when di = Di = 1. Let us write S(X) for the
sum in this special case. In §3 we shall establish the general case by reducing the
situation to this case via a linear change of variables.

Recall that the linear forms under consideration are not necessarily primitive.
We therefore fix integers `i such that L∗i is a primitive linear form, with

Li = `iL
∗
i . (2.1)

It will be convenient to define the least common multiple

L∗ = [`1, `2, `3]. (2.2)

Let ε > 0 and assume that r′X1−ψ > 1 for some parameter ψ ∈ (0, 1). Throughout
our work we will follow common practice and allow the small parameter ε > 0 to
take different values at different parts of the argument, so that xε log x �ε x

ε, for
example. In this section we will show that there exists a polynomial P ∈ R[x] of
degree 3 such that

S(X) = vol(R)X2P (logX)

+Oε
(
Lε∞r

ε
∞r

′ 34 (r∞ + L
1
2
∗ vol(R)

1
2
)
X

7
4+ε,

(2.3)

where the leading coefficient of P is
∏
p σp, with

σp =
(
1− 1

p

)3 ∑
ν∈Z3

>0

%(pν1 , pν2 , pν3)
p2ν1+2ν2+2ν3

. (2.4)

Moreover, the coefficients of P have modulus Oε(Lε∞r
ε
∞(1 + r′−1)ε).

As a first step we deduce from the trivial bound for the divisor function the
estimate

S(X) �ε L
ε
∞r

2+ε
∞ X2+ε. (2.5)

We will also need to record the inequalities

r′

2L∞
6 r∞ 6 2r′L∞, vol(R) 6 4r2∞. (2.6)

The lower bounds for r∞ and 4r2∞ are trivial. To see the remaining bound we
suppose that Li(x) = aix1 + bix2. Let ∆i,j = aibj − ajbi denote the resultant of
Li, Lj . By hypothesis ∆i,j is a non-zero integer. We have

x1 =
bjLi(x)− biLj(x)

∆i,j
, x2 =

aiLj(x)− ajLi(x)
∆i,j

,

for any i, j. It therefore follows that r∞ 6 2r′L∞, as required for (2.6).
The technical tool underpinning the proof of (2.3) is an appropriate “level of

distribution” result. Recall the definitions (1.3) and (1.4). The following is a trivial
modification of the proofs of [2, Lemma 3] and [4, Lemma 3.2].
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Lemma 1. Let ε > 0. Let X > 1, Qi > 2 and Q = Q1Q2Q3. Then there exists an
absolute constant A > 0 such that∑

d∈N3

di6Qi

∣∣∣#(
Λ(d) ∩XRd

)
− vol(XRd)%(d)

(d1d2d3)2

∣∣∣
�ε L

ε
∞(MX(

√
Q+ maxQi) +Q)(logQ)A,

where Rd ⊆ R is any compact set depending on d whose boundary is a piecewise
continuously differentiable closed curve of length at most M .

Recall the definition of r′ from (1.8). In what follows it will be convenient to
set

X ′ = r′X.

For any 1 6 i 6 3 and x ∈ XR we have

τ(Li(x)) =
∑

d|Li(x)

d6
√
X′

1 +
∑

d|Li(x)

d>
√
X′

1

=
∑

d|Li(x)

d6
√
X′

1 +
∑

e|Li(x)

e
√
X′<Li(x)

1

= τ+(Li(x)) + τ−(Li(x)),

(2.7)

say. In this way we may produce a decomposition into 8 subsums

S(X) =
∑

S±,±,±(X), (2.8)

where

S±,±,±(X) =
∑

x∈Z2∩XR

τ±(L1(x))τ±(L2(x))τ±(L3(x)).

Each sum S±,±,±(X) is handled in the same way. Let us treat the sum S+,+,−(X),
which is typical.

On noting that Li(x) 6 X ′ for any x ∈ XR we deduce that

S+,+,−(X) =
∑

d1,d2,d36
√
X′

#(Λ(d) ∩Sd),

where Sd is the set of x ∈ XR for which d3

√
X ′ < L3(x). To estimate this sum we

apply Lemma 1 with Q1 = Q2 = Q3 =
√
X ′. This gives

S+,+,−(X)−
∑

d1,d2,d36
√
X′

%(d) vol(Sd)
(d1d2d3)2

�ε L
ε
∞r

ε
∞

(
r∞r

′ 34X
7
4+ε + r′

3
2X

3
2+ε

)
,

since ∂(R) 6 r∞. If r′
3
4 6 r∞X

1
4 then this error term is satisfactory for (2.3).

Alternatively, if r′
3
4 > r∞X

1
4 , then the conclusion follows from (2.5) instead. It

remains to analyse the main term, the starting point for which is an analysis of the
sum

M(T) =
∑
di6Ti

%(d)
(d1d2d3)2

, (2.9)

for T1, T2, T3 > 1. We will establish the following result.
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Lemma 2. Let ε > 0 and T = T1T2T3. Then there exist c, ci,j , ck, c0 ∈ R, with
modulus Oε(Lε∞), such that

M(T) = c
3∏
i=1

log Ti +
∑

16i<j63

ci,j(log Ti)(log Tj) +
∑

16k63

ck log Tk + c0

+Oε(Lε∞L
1
2
∗ min{T1, T2, T3}−

1
2T ε),

where L∗ is given by (2.2) and
c =

∏
p

σp. (2.10)

Before proving this result we first show how it leads to (2.3). For ease of
notation we write d3 = z and f(z) = vol(Sd). Let Q =

√
X ′. Since f(Q) = 0, it

follows from partial summation that∑
d1,d2,d36Q

%(d) vol(Sd)
(d1d2d3)2

= −
∫ Q

1

f ′(z)M(Q,Q, z)dz,

in the notation of (2.9). An application of Lemma 2 reveals that there exist constants
c, a1, . . . , a5 �ε L

ε
∞ such that

M(Q,Q, z) = c(logQ)2(log z) + a1(logQ)2 + a2(logQ)(log z)

+ a3 logQ+ a4 log z + a5 +Oε(Lε∞L
1
2
∗ z

− 1
2Qε),

with c given by (2.10). However we claim that

f ′(z) � vol(R)
1
2QX.

To see this we suppose that L3(x) = a3x1 + b3x2 with |a3| > |b3|. Then

−f ′(z) = lim
∆→0

∆−1 vol{x ∈ XR : zQ < L3(x) 6 (z + ∆)Q}

= lim
∆→0

∆−1 vol
{(

y1,
y2 + zQ− a3y1

b3

)
∈ XR : 0 < y2 6 ∆Q

}
� Q vol(XR)

1
2 ,

on making the change of variables y1 = x1 and y2 = L3(x) − zQ. This therefore
establishes the claim and we see that the error term contributes

�ε L
ε
∞L

1
2
∗Q

ε

∫ Q

1

|f ′(z)|z− 1
2 dz

�ε L
ε
∞L

1
2
∗ vol(R)

1
2Q

3
2+εX

�ε L
ε
∞r

ε
∞L

1
2
∗ vol(R)

1
2 r′

3
4X

7
4+ε.

Moreover, we have∫ Q

1

f ′(z)dz = f(1) = X2 vol(R) +O(r∞QX),

and ∫ Q

1

(log z)f ′(z)dz = −
∫ Q

1

f(z)
z

dz

= −
∫
x∈XR

∫
1<z<Q−1L3(x)

dzdx
z

= −
∫
x∈XR

(
logL3(x)− logQ

)
dx

= −X2 vol(R) logQ+ bX2,
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for a constant b �ε L
ε
∞r

ε
∞ vol(R)(1 + r′−1)ε. Putting everything together we con-

clude ∑
d1,d2,d36Q

%(d) vol(Sd)
(d1d2d3)2

= 2−3 vol(R)X2P (logX)

+Oε
(
Lε∞r∞r

′ 12X
3
2+ε

)
+Oε

(
Lε∞r

ε
∞L

1
2
∗ vol(R)

1
2 r′

3
4X

7
4+ε

)
,

for a suitable polynomial P ∈ R[x] of degree 3 with leading coefficient
∏
p σp and all

coefficients having modulus Oε(Lε∞r
ε
∞(1+r′−1)ε). The error terms in this expression

are satisfactory for (2.3). Once taken in conjunction with the analogous estimates
for the remaining 7 sums in (2.8), this therefore completes the proof of (2.3).

We may now turn to the proof of Lemma 2, which rests upon an explicit inves-
tigation of the function %(d). Now it follows from the Chinese remainder theorem
that there is a multiplicativity property

%(g1h1, g2h2, g3h3) = %(g1, g2, g3)%(h1, h2, h3),

whenever gcd(g1g2g3, h1h2h3) = 1. Recall that ∆i,j is used to denote the resultant
of Li, Lj and set

∆ = |∆1,2∆1,3∆2,3| 6= 0.

Recall the definition of `i and L∗i from (2.1). The following result collects together
some information about the behaviour of %(d) at prime powers.

Lemma 3. Let p be a prime. Suppose that min{ei, νp(`i)} = 0. Then we have

%(pe1 , 1, 1) = pe1 , %(1, pe2 , 1) = pe2 , %(1, 1, pe3) = pe3 .

Next suppose that 0 6 ei 6 ej 6 ek for a permutation {i, j, k} of {1, 2, 3}. Then we
have

%(pe1 , pe2 , pe3)

{
= p2ei+ej+ek , if p - ∆,
6 p2ei+ej+ek+min{ej ,vp(∆)}+min{ek,vp(`k)}, if p | ∆.

Proof. The first part of the lemma is obvious. To see the second part we suppose
without loss of generality that e1 6 e2 6 e3.

When p - ∆ we see that the conditions pei | Li(x) in %(pe1 , pe2 , pe3) are equiv-
alent to pe2 | x and pe3 | L3(x). Thus we conclude that

%(pe1 , pe2 , pe3) = #{x (mod pe1+e3) : pe3−e2 | L3(x)} = p2e1+e2+e3 ,

as required.
Turning to the case p | ∆, we begin with the inequalities

%(pe1 , pe2 , pe3) 6 p2e1%(1, pe2 , pe3)

6 p2e1#{x (mod pe2+e3) : pe2 | ∆2,3x, pe3 | L3(x)}.

Let us write δ = vp(∆2,3) and λ = vp(`3) for short. In particular it is clear that
δ > λ. In this way we deduce that %(pe1 , pe2 , pe3) is at most

p2e1#{x (mod pe2+e3) : pmax{e2−δ,0} | x, pmax{e3−λ,0} | L∗3(x)}.

Suppose first that e2 > δ. Then 0 6 e2 − δ 6 e3 − λ and it follows that

%(pe1 , pe2 , pe3) 6 p2e1#{x (mod pe3+δ) : pe3−λ | pe2−δL∗3(x)}

= p2e1 · pe3+δ · pe2+λ

= p2e1+e2+e3+δ+λ,
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since L∗3 is primitive. Alternatively, if e2 < δ, we deduce that

%(pe1 , pe2 , pe3) 6 p2e1#{x (mod pe2+e3) : pmax{e3−λ,0} | L∗3(x)}

= p2e1+2e2+e3+min{e3,λ}.

Taking together these two estimates completes the proof of the lemma. �

We now have the tools in place with which to tackle the proof of Lemma 2.
We will argue using Dirichlet convolution, as in [3, Lemma 4]. Let

f(d) =
%(d)
d1d2d3

and let h : N3 → N be chosen so that f(d) = (1 ∗ h)(d), where 1(d) = 1 for all
d ∈ N3. We then have

h(d) = (µ ∗ f)(d),
where µ(d) = µ(d1)µ(d2)µ(d3). The following result is the key technical estimate in
our analysis of M(T).

Lemma 4. For any ε > 0 and any δ1, δ2, δ3 > 0 such that δ1 + δ2 + δ3 < 1, we have∑
k∈N3

|h(k)|
k1−δ1
1 k1−δ2

2 k1−δ3
3

�δ1,δ2,δ3,ε L
ε
∞L

δ1+δ2+δ3
∗ ,

where L∗ is given by (2.2).

Proof. On noting that kδ11 k
δ2
2 k

δ3
3 6 kδΣ1 +kδΣ2 +kδΣ3 , with δΣ = δ1 +δ2 +δ3, it clearly

suffices to establish the lemma in the special case δ2 = δ3 = 0 and 0 6 δ1 < 1.
Using the multiplicativity of h, our task is to estimate the Euler product

P =
∏
p

(
1 +

∑
νi>0
ν 6=0

|h(pν1 , pν2 , pν3)|pν1δ1
pν1+ν2+ν3

)
=

∏
p

Pp,

say. Now for any prime p, we deduce that

|h(pν1 , pν2 , pν3)| = |(µ ∗ f)(pν1 , pν2 , pν3)| 6 (1 ∗ f)(pν1 , pν2 , pν3), (2.11)

whence

Pp 6 1 +
∑

αi,βi>0
α+β 6=0

pα1δ1

pα1+α2+α3
· f(pβ1 , pβ2 , pβ3)pβ1δ1

pβ1+β2+β3
.

We may conclude that the contribution to the above sum from α,β such that β = 0
is O(p−1+δ1).

Suppose now that β 6= 0, with βi 6 βj 6 βk for some permutation {i, j, k} of
{1, 2, 3} such that βk > 1. Then Lemma 3 implies that

f(pβ1 , pβ2 , pβ3)pβ1δ1

pβ1+β2+β3
6 pβ1δ1 · p

min{βj ,vp(∆)}+min{βk,λk}

pβj+βk
,

where we have written λk = vp(`k) for short. Summing this contribution over β 6= 0
we therefore arrive at the contribution

6
∑

16k63

∑
max{β1,β2,β3}=βk>1

pβ1δ1 · pmin{βk,λk}−βk

�
∑

16k63

∑
βk>1

pβk(δ1−1)+min{βk,λk}

� pmax{λ1,λ2,λ3}δ1 .

It now follows that∏
p|∆

Pp 6
∏
p|∆

(
1 +O(p−1+δ1) +O(pmax{λ1,λ2,λ3}δ1)

)
�ε L

ε
∞L

δ1
∗ ,
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where L∗ is given by (2.2). This is satisfactory for the lemma.
Turning to the contribution from p - ∆, it is a simple matter to conclude that

%(pν1 , pν2 , pν3 ;L1, L2, L3) = %(pν1 , pν2 , pν3 ;L∗1, L
∗
2, L

∗
3).

Hence Lemma 3 yields h(pν , 1, 1) = h(1, pν , 1) = h(1, 1, pν) = 0 if ν > 1 and p - ∆,
since then f(pν , 1, 1) = f(1, pν , 1) = f(1, 1, pν) = 1. Moreover, we deduce from
Lemma 3 and (2.11) that for p - ∆ we have

|h(pν1 , pν2 , pν3)| 6 (1 + ν1)(1 + ν2)(1 + ν3)
∑

06ni6νi

f(pn1 , pn2 , pn3)

6 (1 + ν1)2(1 + ν2)2(1 + ν3)2 max
06ni6νi

f(pn1 , pn2 , pn3)

= (1 + ν1)2(1 + ν2)2(1 + ν3)2pmin{ν1,ν2,ν3}.

Thus ∏
p-∆

Pp =
∏
p-∆

(
1 +

∑
ν

(1 + ν1)2(1 + ν2)2(1 + ν3)2pmin{ν1,ν2,ν3}

pν1(1−δ1)+ν2+ν3

)
,

where the sum over ν is over all ν ∈ Z3
>0 such that ν1 + ν2 + ν3 > 2, with at least

two of the variables being non-zero. The overall contribution to the sum arising
from precisely two variables being non-zero is clearly O(p−2). Likewise, we see that
the contribution from all three variables being non-zero is O(p−2+δ1). It therefore
follows that ∏

p-∆

Pp =
∏
p-∆

(
1 +O(p−2+δ1)

)
�δ1,ε L

ε
∞,

since δ1 < 1. This completes the proof of the lemma. �

We are now ready to complete the proof of Lemma 2. On recalling the definition
(2.9), we see that

M(T) =
∑
di6Ti

f(d)
d1d2d3

=
∑
di6Ti

(1 ∗ h)(d)
d1d2d3

=
∑
ki6Ti

h(k)
k1k2k3

∑
ei6

Ti
ki

1
e1e2e3

.

Now the inner sum is estimated as
3∏
i=1

(
log Ti − log ki + γ +O(k

1
2
i T

− 1
2

i )
)
.

The main term in this estimate is equal to
3∏
i=1

log Ti +R(log T1, log T2, log T3),

for a quadratic polynomial R ∈ R[x, y, z] with coefficients bounded by �ε (k1k2k3)ε

and no non-zero coefficients of x2, y2 or z2. The error term is �ε T
ε max{kiT−1

i } 1
2 ,

with T = T1T2T3. We may therefore apply Lemma 4 to obtain an overall error of

�ε L
ε
∞L

1
2
∗ min{Ti}−

1
2T ε, (2.12)

where L∗ is given by (2.2).
Our next step is to show that the sums involving k can be extended to infin-

ity with negligible error. If a �ε (k1k2k3)ε is any of the coefficients in our cubic
polynomial main term, then for j ∈ {1, 2, 3} Rankin’s trick yields

∑
k∈N3

kj>Tj

|h(k)||a|
k1k2k3

�ε

∑
k∈N3

kj>Tj

|h(k)|
(k1k2k3)1−ε

<
1

T
1
2
j

∑
k∈N3

|h(k)|k
1
2
j

(k1k2k3)1−ε
,



10

which Lemma 4 reveals is bounded by (2.12). We have therefore arrived at the
asymptotic formula for M(T) in Lemma 2, with coefficients of size Oε(Lε∞), as
follows from Lemma 4. Moreover, the leading coefficient takes the shape∑

k∈N3

h(k)
k1k2k3

=
∑
k∈N3

(µ ∗ f)(k)
k1k2k3

=
∏
p

σp,

in the notation of (2.4). This therefore concludes the proof of Lemma 2.

3. Theorem 3: general case

Let d,D ∈ N3, with di | Di, and assume that r′X1−θ > 1 for θ ∈ ( 1
4 , 1). In estimat-

ing S(X;d,D), our goal is to replace the summation over Λ(D) by a summation
over Z2, in order to relate it to the sum S(X) that we studied in the previous
section. We begin by recording the upper bound

S(X;d,D) �ε L
ε
∞r

ε
∞

(vol(R)X2+ε

detΛ(D)
+ r∞X

1+ε
)
. (3.1)

This follows immediately on taking the trivial estimate for the divisor function and
applying standard lattice point counting results.

Given any basis e1, e2 for Λ(D), let Mi(v) be the linear form obtained from
d−1
i Li(x) via the change of variables x 7→ v1e1 + v2e2. By choosing e1, e2 to be a

minimal basis, we may further assume that

1 6 |e1| 6 |e2|, |e1||e2| � det Λ(D), (3.2)

where |z| = max |zi| for z ∈ R2. Write M for the matrix formed from e1, e2. Carrying
out this change of variables, we obtain

S(X;d,D) =
∑

v∈Z2∩XRM

τ(M1(v))τ(M2(v))τ(M3(v)),

where RM = {M−1z : z ∈ R}. Note that Mi(v) > 0 for every v in the summation.
Moreover, the Mi will be linearly independent linear forms defined over Z and
∂(RM) 6 r∞(RM) in the notation of (1.7), where ∂(RM) is the length of the
boundary of RM.

We now wish to estimate this quantity. In view of (3.2) and the fact that
detΛ(D) = [Z2 : Λ(D)] divides D = D1D2D3, it is clear that

L∞(M1,M2,M3) 6 DL∞(L1, L2, L3) = DL∞,

in the notation of (1.6). In a similar fashion, recalling the definitions (1.7) and (1.8),
we observe that

r∞(RM) � |e1||e2|
|detM|

r∞(R) � r∞(R) = r∞

and r′(M1,M2,M3,RM) 6 min{d1, d2, d3}−1r′(L1, L2, L3,R) 6 r′.
Note that r∞X 6 r∞r

′ 34X
7
4 , by our hypothesis on r′. Moreover, since

detΛ(D) =
D2

%(D)
,

it follows from Lemma 3 that det Λ(D) � dk gcd(dk, `k)−1 for any 1 6 k 6 3.
Suppose for the moment that dk = max{di} > X

1
4 . Then an application of (2.6)

and (3.1) easily reveals that

S(X;d,D) �ε L
ε
∞r

ε
∞

(r2∞X2+ε gcd(dk, `k)
dk

+ r∞X
1+ε

)
�ε L

ε
∞r

ε
∞(r∞r′

3
4 + L

1
2∞L

1
2
∗ r

2
∞)X

7
4+ε,

(3.3)
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where `k is defined in (2.1) and L∗ by (2.2). Alternatively, if max{di} 6 X
1
4 then

for any ψ > 0 we have

r′(M1,M2,M3,RM)X1−ψ > r′X
3
4−ψ > r′X1−θ > 1,

provided that ψ 6 θ− 1
4 . Taking ψ = θ− 1

4 ∈ (0, 3
4 ) all the hypotheses are therefore

met for an application of (2.3).
To facilitate this application we note that vol(RM) = |detM|−1 vol(R). More-

over, if mi denotes the greatest common divisor of the coefficients of Mi then
mi | `i detΛ(D). Hence we have

L∗(M1,M2,M3) = [m1,m2,m3] 6 [`1, `2, `3] det Λ(D) = L∗ det Λ(D),

from which it is clear that

L∗(M1,M2,M3)
1
2 vol(RM)

1
2 6 L

1
2
∗ vol(R)

1
2 6 2L

1
2
∗ r∞,

by (2.6). Finally we recall from above that r′(M1,M2,M3,RM) > (max{di})−1r′.
Collecting all of this together, it now follows from (2.3) and (3.3) that

S(X;d,D) =
vol(R)

detΛ(D)
X2P (logX) +Oε

(
E

)
,

where the leading coefficient of P is
∏
p σ

∗
p and σ∗p is defined as for σp in (2.4), but

with %(h;L1, L2, L3) replaced by %(h;M1,M2,M3), and

E = DεLε∞r
ε
∞

(
L

1
2
∗ r∞r

′ 34 + L
1
2∞L

1
2
∗ r

2
∞

)
X

7
4+ε.

Furthermore, the coefficients of P are all Oε(DεLε∞r
ε
∞(1 + r′−1)ε) in modulus, so

that the coefficients of the polynomial appearing in Theorem 3 have the size claimed
there. Following the calculations in [2, §6] one finds that

1
detΛ(D)

∏
p

σ∗p =
∏
p

σp(d,D),

in the notation of (1.9).
Let us write S(X;d,D) = S(X;d,D;L1, L2, L3,R) in (1.5) in order to stress

the various dependencies. Recall the notation δ = δ(D) that was introduced prior
to the statement of Theorem 3. In order to obtain the factor δ−1 in the error term
E we simply observe that

S(X;d,D;L1, L2, L3,R) = S(X;d,D; δL1, δL2, δL3, δ
−1R).

According to (1.7) and (1.8), we see that the value of r′ is left unchanged and r∞
should be divided by δ. However, L∞ is replaced by δL∞ and L∗ becomes δL∗. On
noting that L∗ 6 `1`2`3 6 L3

∞, we easily conclude that the new error term is as
in Theorem 3. Finally the constants obtained as factors of X2(logX)i in the main
term must be the same since they are independent of X. This therefore concludes
the proof of Theorem 3.

4. Treatment of T (X)

In this section we establish Theorem 1. For convenience we will assume that the
coefficients of L1, L2, L3 are all positive so that Li(x) > 0 for all x ∈ [0, 1]2. The
general case is readily handled by breaking the sum over x into regions on which
the sign of each Li(x) is fixed. In order to transfigure T (X) into the sort of sum
defined in (1.5), we will follow the opening steps of the argument in [3, §7]. This
hinges upon the formula

τ(n1n2n3) =
∑
e∈N3

eiej |nk

µ(e1e2)µ(e3)
2ω(gcd(e1,n1))+ω(gcd(e2,n2))

τ
( n1

e2e3

)
τ
( n2

e1e3

)
τ
( n3

e1e2

)
,
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which is established in [3, Lemma 10] and is valid for any n ∈ N3. In this way we
deduce that

T (X) =
∑
e∈N3

µ(e1e2)µ(e3)
∑

k=(k1,k2,k
′
1,k

′
2)∈N4

kik
′
i|ei

µ(k′1)µ(k′2)
2ω(k1)+ω(k2)

Te,k(X),

with

Te,k(X) =
∑

x∈Λ∩[0,X]2

τ
(L1(x)
e2e3

)
τ
(L2(x)
e1e3

)
τ
(L3(x)
e1e2

)
and Λ = Λ([e2e3, k1k

′
1], [e1e3, k2k

′
2], e1e2) given by (1.3). Under the conditions kik′i |

ei and |µ(e1e2)| = |µ(e3)| = 1, we clearly have Λ = Λ([e2e3, k], [e1e3, k], e1e2), with
k = k1k

′
1k2k

′
2. Thus Te,k(X) depends only on k | e1e2. Noting that Te,k(X) = 0

unless |e| 6 X, and∑
k=(k1,k2,k

′
1,k

′
2)∈N4

kik
′
i=gcd(k,ei)

µ(k′1)µ(k′2)
2ω(k1)+ω(k2)

=
µ(gcd(k, e1))µ(gcd(k, e2))
2ω(gcd(k,e1))+ω(gcd(k,e2))

=
µ(k)
2ω(k)

,

we may therefore write

T (X) =
∑
|e|6X

µ(e1e2)µ(e3)
∑
k|e1e2

µ(k)
2ω(k)

Te,k(X), (4.1)

with Te,k(X) = S(X,d,D) in the notation of (1.5) and

d = (e2e3, e1e3, e1e2), D = ([e2e3, k], [e1e3, k], e1e2).

For the rest of this section we will allow all of our implied constants to depend
upon ε and L1, L2, L3. In particular we may clearly assume that r∞ = 1, L∞ � 1
and 1 6 r′ � 1. Now let δ = δ(D) be the quantity defined in the buildup to
Theorem 3. A little thought reveals that

δ > [e′1, e
′
2, e

′
3, k

′] � [e1e2, e3],

since e1e2 is square-free, where e′i = ei

gcd(ei,∆j,k) and k′ = k
gcd(k,∆1,2)

and we recall
that ∆j,k is the resultant of Lj , Lk.

In view of the inequality |e| 6 X, we conclude from Theorem 3 that

Te,k(X) = X2P (logX) +O
(
[e1e2, e3]−1X

7
4+ε

)
,

for a cubic polynomial P with coefficients of size � (e1e2e3)ε[e1e2, e3]−2, since we
have det Λ(D) > δ2. The overall contribution from the error term, once inserted
into (4.1), is

� X
7
4+ε

∑
|e|6X

|µ(e1e2)µ(e3)|
[e1e2, e3]

6 X
7
4+ε

∑
|e|6X

gcd(e1e2, e3)
e1e2e3

= X
7
4+ε

∑
e1,e26X

1
e1e2

∑
h|e1e2

h
∑
e36X
h|e3

1
e3

� X
7
4+ε.
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This is clearly satisfactory from the point of view of Theorem 1. Similarly we deduce
that the overall error produced by extending the summation over e to infinity is

� X2+ε
∑
|e|>X

|µ(e1e2)µ(e3)|(e1e2e3)ε

[e1e2, e3]2

� X
7
4+ε

∑
e∈N3

gcd(e1e2, e3)2|e|
1
4

(e1e2e3)2

� X
7
4+ε.

This therefore concludes the proof of Theorem 1.

5. Divisor problem on average

In this section we prove Theorem 2. We begin by writing∑
h6H

(
Th(X)− chX(logX)3

)
= Σ1 − Σ2,

say, where ch is given by (1.1). The following result deals with the second term.

Lemma 5. Let H > 1. Then we have

Σ2 = cXH(logX)3 +O
(
XH

1
2 (logX)3

)
,

where
c =

4
3

∏
p>2

(
1 +

1
p

)−1(
1 +

1
p

+
1
p2

)
. (5.1)

Proof. We have Σ2 = c1X(logX)3S(H), where c1 is given by taking h = 1 in (1.1),
and S(H) =

∑
h6H f(h), with f given multiplicatively by (1.2). Using the equality

f = (f ∗ µ) ∗ 1 and the trivial estimate [x] = x+O(x
1
2 ), we see that

S(H) =
∞∑
d=1

(f ∗ µ)(d)
[H
d

]
= H

∞∑
d=1

(f ∗ µ)(d)
d

+O
(
H

1
2

∞∑
d=1

|(f ∗ µ)(d)|
d

1
2

)
,

provided that the error term is convergent.
For k > 1 we have (f ∗ µ)(pk) = f(pk)− f(pk−1). Hence we calculate

(f ∗ µ)(pk) =

 1
pk ·

1+3k− 3k
p −

3+3k

p2 + 3k+2
p3

(1+ 2
p )(1− 1

p )2
, if p > 2,

1
2k · (1 + 15k

11 ), if p = 2,

for k > 2, and

(f ∗ µ)(p) =

 1
p ·

4+ 5
p

1+ 2
p

, if p > 2,
13
11 , if p = 2.

In particular it is clear that |(f ∗ µ)(pk)| � kp−k, whence
∞∑
d=1

|(f ∗ µ)(d)|
d

1
2

�ε

∞∑
d=1

d−
3
2+ε � 1,

for ε < 1
2 . It follows that S(H) = c′1H +O(H

1
2 ), where

c′1 =
∏
p

∑
k>0

(f ∗ µ)(pk)
pk

=
64
33

∏
p>2

(
1 +

2
p

)−1(
1− 1

p

)−2(
1 +

1
p

)−1(
1 +

1
p

+
1
p2

)
.

We conclude the proof of the lemma by noting that c1c′1 = c. �
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It would be easy to replace the exponent 1
2 of H by any positive number, but

this would not yield an overall improvement of Theorem 2. We now proceed to an
analysis of the sum

Σ1 =
∑
h6H

Th(X) =
∑
h6H
n6X

τ(n− h)τ(n)τ(n+ h),

in which we follow the convention that τ(−n) = τ(n). This corresponds to a sum
of the type considered in (1.5), with di = Di = 1 and

L1(x) = x1 − x2, L2(x) = x1, L3(x) = x1 + x2.

The difference is that we are now summing over a lopsided region.

Lemma 6. Let H > 1 and let ε > 0. Then we have

Σ1 = cXH(logX)3 +Oε
(
XH(logX)2 +X

1
2+εH +X

7
4+ε

)
,

where c is given by (5.1).

Proof. Tracing through the proof of (2.3) one is led to consider 8 sums

Σ±,±,±1 =
∑
h6H
n6X

τ±(n− h)τ±(n)τ±(n+ h),

with X ′ = 2X in the construction (2.7) of τ±. Arguing as before we examine a
typical sum

Σ+,+,−
1 =

∑
d1,d2,d36

√
2X

#(Λ(d) ∩Rd(X,H)),

where Rd(X,H) = {x ∈ (0, X] × (0,H] : d3

√
2X < L3(x)}. An entirely analogous

version of Lemma 1 for our lopsided region readily leads to the conclusion that

Σ+,+,−
1 =

∑
d1,d2,d36

√
2X

%(d) vol(Rd(X,H))
(d1d2d3)2

+Oε
(
X

1
2+εH +X

7
4+ε

)
.

Combining Lemma 2 with partial summation, as previously, we conclude that∑
d1,d2,d36

√
2X

%(d) vol(Rd(X,H))
(d1d2d3)2

= XH(logX)3
∏
p

σp

+Oε(XH(logX)2 +X
7
4+ε),

with σp given by (2.4). This gives the statement of the lemma with c =
∏
p σp.

It remains to show that c matches up with (5.1). Let m(a) = maxi 6=j{ai + aj}
for any a ∈ Z3

>0. For z ∈ C such that |z| < 1 we claim that

S(z) =
∑

ν1,ν2,ν3>0

zm(ν) =
1 + z + z2

(1− z)2(1− z2)
. (5.2)

But this follows easily from the observation

S(z) = 1 + 3
∑

ν1=ν2=0
ν3>1

zν3 + 3
∑
ν1=0
ν2,ν3>1

zν2+ν3 + z2S(z).

Now the linear forms that arise in our analysis have resultants ∆1,2 = 1,∆1,3 = 2
and ∆2,3 = 1. Moreover, `1 = `2 = `3 = 1 in the notation of (2.1). Suppose that
p > 2 and write z = 1

p . Then it follows from Lemma 3 that∑
ν∈Z3

>0

%(pν1 , pν2 , pν3)
p2ν1+2ν2+2ν3

= S(z) =
1 + z + z2

(1− z)2(1− z2)
.
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If p = 2, it will be necessary to revisit the proof of Lemma 3. To begin with it is
clear that %(2ν1 , 2ν2 , 2ν3) = 2ν1+ν2+ν3+min{νi} if min{ν1, ν3} 6 ν2. If ν2 < νi 6 νj
for some permutation {i, j} of {1, 3} then

%(2ν1 , 2ν2 , 2ν3) = #{x (mod 2ν1+ν2+ν3) : 2νi | ∆1,3x, 2νj | Lj(x)} = 2ν1+2ν2+ν3+1.

Writing z = 1
2 we obtain∑

ν∈Z3
>0

%(2ν1 , 2ν2 , 2ν3)
22ν1+2ν2+2ν3

=
∑

ν∈Z3
>0

min{ν1,ν3}6ν2

zm(ν) +
∑

ν∈Z3
>0

min{ν1,ν3}>ν2

zm(ν)−1

= S(z) +
∑

ν∈Z3
>0

min{ν1,ν3}>ν2

zν1+ν3−1(1− z)

=
1 + z + z2

(1− z)2(1− z2)
+

z

(1− z)2(1 + z)
.

Hence, (2.4) becomes

σp =

{
(1 + 1

p )
−1(1 + 1

p + 1
p2 ), if p > 2,

4
3 , if p = 2,

as required to complete the proof of the lemma. �

Once combined, Lemmas 5 and 6 yield

Σ1 − Σ2 �ε XH
1
2 (logX)3 +XH(logX)2 +X

1
2+εH +X

7
4+ε.

This is o(XH(logX)3) for H > X
3
4+ε, as claimed in Theorem 2.

6. Bilinear hypersurfaces

In this section we establish Theorem 4, for which we begin by studying the counting
function

N0(X) = #{(u,v) ∈ (Z \ {0})6 : |v| 6 v0 6 X
1
2 , |u| 6 v−1

0 X, u.v = 0},

for large X, where we write |x| = max{|x0|, |x1|, |x2|} for any x = (x0, x1, x2) ∈ R3.
The overall contribution from vectors with |v1| = v0 is

�
∑

|v2|6v06X
1
2

#{u ∈ Z3 : |u| 6 v−1
0 X, u0v0 + u1v0 + u2v2 = 0}

�
∑

|v2|6v06X
1
2

X2

v3
0

� X2,

as can be seen using the geometry of numbers. Similarly there is a contribution of
O(X2) to N0(X) from vectors for which |v2| = v0. Thus we may conclude that

N0(X) = 23N1(X) +O(X2),

where N1(X) is the contribution to N0(X) from vectors with 0 < v1, v2 < v0 and
u2 > 0, with the equation u.v = 0 replaced by u0v0 + u1v1 = u2v2.

Define the region

V =
{

α ∈ [0, 1]6 : α2, α3 < α1 6
1
2
, α1 + α5 − α2 6 1, α1 + α6 − α3 6 1

}
,

and set
L1(x) = x1, L2(x) = x2, L3(x) = x1 + x2.
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We will work with the region R = {x ∈ [−1, 1]2 : x1x2 6= 0, x1 + x2 > 0}. Then we
clearly have N1(X) = R(X), with

R(X) =
∑

x∈Z2∩XR

#
{
e ∈ N3 : ei | Li(x), (ε, ξ) ∈ V

}
,

where ε = (ε1, ε2, ε3), ξ = (ξ1, ξ2, ξ3) and

εi =
log ei
logX

, ξi =
log |Li(x)|

logX
.

Note that for V = [0, 1]6 this sum coincides with (1.5) for di = Di = 1. We establish
an asymptotic formula for R(X) along the lines of the proof of Theorem 3. We
will need to arrange things so that we are only considering small divisors in the
summand. It is easy to see that the overall contribution to the sum from e such
that e2j = Lj(x) for some j ∈ {1, 2, 3} is

�ε X
ε

∑
ej6

√
X

#
{
x ∈ Z2 ∩XR : Lj(x) = e2j

}
�ε X

3
2+ε.

It follows that we may write

R(X) =
∑

m∈{±1}3
R(m)(X) +Oε(X

3
2+ε), (6.1)

where R(m)(X) is the contribution from miei 6 mi

√
|Li(x)|.

We indicate how to get an asymptotic formula for R(1,1,−1)(X) = R+,+,−(X),
say, which is typical. Writing L3(x) = e3f3, we see that f3 6

√
L3(x) and

ε3 =
log(f−1

3 L3(x))
logX

= ξ3 −
log f3
logX

.

On relabelling the variables we may therefore write

R+,+,−(X) =
∑

x∈Z2∩XR

#
{
e ∈ N3 : ei | Li(x), ei 6

√
|Li(x)|

(ε, ξ) ∈ V +,+,−

}
,

where
V +,+,− = {(ε, ξ) ∈ R6 : (ε1, ε2, ξ3 − ε3, ξ) ∈ V }.

Interchanging the order of summation we obtain

R+,+,−(X) =
∑
e∈N3

#
{
x ∈ Λ(e) ∩XR : ξ ∈ V +,+,−(e)

}
,

where ξ ∈ V +,+,−(e) if and only if (ε, ξ) ∈ V +,+,− and 2εi 6 ξi.
On verifying that the underlying region is a union of two convex regions, an

application of Lemma 1 yields

R+,+,−(X) =
∑
e∈N3

vol{x ∈ XR : ξ ∈ V +,+,−(e)}%(e)
(e1e2e3)2

+Oε(X
7
4+ε).

Lemma 3 implies that

%(e)
e1e2e3

= gcd(e1, e2, e3) = f(e),

say, whence

R+,+,−(X) =
∫
x∈XR

∑
e∈N3

2εi6ξi

χV (ε1, ε2, ξ3 − ε3, ξ)f(e)
e1e2e3

dx +Oε(X
7
4+ε),
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where χV is the characteristic function of the set V . We now write f = h ∗ 1 as a
convolution, for a multiplicative arithmetic function h. Opening it up gives

R+,+,−(X) =
∑
k∈N3

h(k)
k1k2k3

∫
x∈XR

M(X)dx +Oε(X
7
4+ε), (6.2)

where for κi = log ki

logX we set

M(X) =
∑
e∈N3

2εi+2κi6ξi

χV (ε1 + κ1, ε2 + κ2, ξ3 − ε3 − κ3, ξ)
e1e2e3

.

The estimation of M(X) will depend intimately on the set V . Indeed we wish to
show that

∫
M(X)dx has order X2 logX, whereas taking V = [0, 1]6 leads to a sum

with order X2(logX)3.
Writing out the definition of the set V we see that

M(X) =
∑
e1∈N

06ε1+κ16 1
2

2ε1+2κ16ξ1

1
e1

∑
e2∈N

06ε2+κ2<ε1+κ1
ε1+κ1+ξ261+ε2+κ2

2ε2+2κ26ξ2

1
e2

∑
e3∈N

ξ3<ε1+κ1+ε3+κ361
2ε3+2κ36ξ3

1
e3
,

where εi = log ei

logX , κi = log ki

logX and ξi = log |Li(x)|
logX . Further thought shows that the

outer sum over e1 can actually be taken over e1 such that

ξ3
2
< ε1 + κ1 6 min

{1
2
,
ξ1
2
, 1− ξ2

2

}
.

The inner sums over e2, e3 can be approximated simultaneously by integrals, giving(
logX

∫ min{ε1+κ1,
ξ2
2 }

max{0,ε1+κ1+ξ2−1}
dτ2 +O(1)

)(
logX

∫ min{1−ε1−κ1,
ξ3
2 }

max{0,ξ3−ε1−κ1}
dτ3 +O(1)

)
,

after an obvious change of variables. We see that the overall contribution to M(X)
from the error terms is

� logX
∫ ξ1

2

ξ3
2

(
1 + logX

∫ τ1

ξ2+τ1−1

dτ2 + logX
∫ ξ3

2

ξ3−τ1
dτ3

)
dτ1

= (I1 + I2 + I3) logX,

say. Let Ii denote the integral of Ii logX over x ∈ XR. We see that

I1 6
1
2

∫
{x∈XR: x1+x2<|x1|}

(
log |x1| − log(x1 + x2)

)
dx � X2.

Next we note that

I2 � (logX)2
∫

(τ1,τ2)∈[0, 12 ]2

∫
{x∈XR: ξ362τ1, ξ261+τ2−τ1, x2>0}

dxdτ1dτ2

6 (logX)4
∫

(τ1,τ2)∈[0, 12 ]2

∫ 2τ1

−∞

∫ 1+τ2−τ1

−∞
Xu+vdudvdτ1dτ2

= (logX)2
∫

(τ1,τ2)∈[0, 12 ]2
X1+τ1+τ2dτ1dτ2 � X2,

and likewise,

I3 � (logX)2
∫

(τ1,τ3)∈[0, 12 ]2

∫
{x∈XR: ξ261, ξ36τ1+τ3, x2>0}

dxdτ1dτ3

6 (logX)4
∫

(τ1,τ3)∈[0, 12 ]2

∫ 1

−∞

∫ τ1+τ3

−∞
Xu+vdudvdτ1dτ3 � X2.
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Interchanging the sum over e1 with the integrals over τ2, τ3 one uses the same sort
of argument to show that the final summation can be approximated by an integral.

This therefore leads to the conclusion that∫
x∈XR

M(X)dx = (logX)3
∫
x∈XR

∫
2τ16ξ1
2τ26ξ2
2τ3>ξ3

χV (τ , ξ)dτdx +O(X2),

after an obvious change of variables. We insert this into (6.2) and then, on assuming
analogous formulae for all the sums R±,±,±(X), we sum over all of the various
permutations of m in (6.1). This gives

R(X) = c0I(X) +O(X2),

where

c0 =
∑
k∈N3

h(k)
k1k2k3

, I(X) = (logX)3
∫
x∈XR

∫
τ∈R3

χV (τ , ξ)dτdx.

Recalling (5.2) we easily deduce that

c0 =
∑
a∈N3

µ(a1)µ(a2)µ(a3)
a1a2a3

∑
b∈N3

gcd(b1, b2, b3)
b1b2b3

=
∏
p

(
1− 1

p

)3

S
(1
p

)
=

∏
p

(
1 +

1
p

)−1(
1 +

1
p

+
1
p2

)
.

It remains to analyse the term

I(X) = (logX)3 vol

(x, τ ) ∈ R2 × [0, 1]3 :

x1 + x2 > 0, |x1| 6 X,
τ2, τ3 < τ1 6 1

2 ,
log |x2|
logX 6 1 + τ2 − τ1,

log x1+x2
logX 6 1 + τ3 − τ1


= I+,+(X) + I−,+(X) + I+,−(X),

where I+,+(X) (resp. I−,+(X), I+,−(X)) is the contribution from x, τ such that
x1 > 0 and x2 > 0 (resp. x1 < 0 and x2 > 0, x1 > 0 and x2 < 0). In the first
integral it is clear that x1 < x1 + x2 6 X so that the condition |x1| 6 X is implied
by the others. Likewise, in the second volume integral we will have x2 > |x1| and
so the condition |x1| 6 X is implied by the inequalities involving x2. An obvious
change of variables readily leads to the conclusion that I+,+(X) + I−,+(X) is

= (logX)5
∫
{τ∈[0, 12 ]3:τ2,τ3<τ1}

∫ 1+τ3−τ1

−∞

∫ 1+τ2−τ1

−∞
Xu+vdudvdτ

= X2(logX)3
∫
{τ∈[0, 12 ]3:τ2,τ3<τ1}

Xτ2+τ3−2τ1dτ

=
1
2
X2 logX +O(X2).

The final integral I+,−(X) can be written as in the first line of the above, but with
the added constraint that Xu+Xv 6 X in the inner integration over u, v. For large
X this constraint can be dropped with acceptable error, which thereby leads to the
companion estimate

I+,−(X) =
1
2
X2 logX +O(X2).

Putting everything together we have therefore shown that

N0(X) = 23N1(X) +O(X2) = 8c0X2 logX +O(X2),
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with c0 given above. Running through the reduction steps in [11, §5] rapidly leads
from this asymptotic formula to the statement of Theorem 4.

Acknowledgments

It is pleasure to thank the referee for carefully reading the manuscript and mak-
ing numerous helpful suggestions. The author is indebted to both the referee and
Daniel Loughran for pointing out an oversight in the earlier treatment of Theorem 3.
This work is supported by the NSF under agreement DMS-0635607 and EPSRC
grant number EP/E053262/1. It was undertaken while the author was visiting the
Hausdorff Institute in Bonn and the Institute for Advanced Study in Princeton, the
hospitality and financial support of which are gratefully acknowledged.

References

[1] V.V. Batyrev and Yu.I. Manin, Sur le nombre des points rationnels de hauteur borné
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