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PERFECT, STRONGLY EUTACTIC LATTICES
ARE PERIODIC EXTREME

ACHILL SCHURMANN

ABSTRACT. We introduce a parameter space for periodic point setengas

a union ofm translates of a point lattice. In it we investigate the bébraof

the sphere packing density function and derive sufficiemidig@mns for local
optimality. Using these criteria we prove that perfectostly eutactic lattices
cannot be locally improved to yield a denser periodic splpareking. This in
particular implies that the densest known lattice spherkipgs in dimension

d < 8 andd = 24 cannot locally be modified to yield a periodic sphere packing
with greater density.

1. INTRODUCTION

The classical and widely studiesphere packing problenasks for a non-
overlapping arrangement of equally sized spheres in a d®ani space, such that
the fraction of space covered by spheres is maximized. Tdtdgmn arose from the
arithmetical study of positive definite quadratic forms. tBg works Thue [Thul0]
and Hales[[Hal05] the optimal arrangements of spheres averkmup to dimen-
sion 3. We refer to [[GL87],[[CS99], [Mar(3] and [Sch08] for deta#lad further
reading.

For reasons related to the historical roots of the spheremgaproblem, special
attention has been dpoint) latticesas the discrete set of sphere centers. In dimen-
sion2 thehexagonal latticeand in dimensiors theface-centered-cubic latticgeld
optimal sphere packings. For the restriction of the sphaokipg problem to lat-
tices, the optimal configurations are known up to dimensiand in dimensior24
(see Tabléll). Here, solutions are given by fascinatingotdjehe so-calledoot
latticesand theLeech Lattice We refer to [CS99],[[Mar03] and [NS] for further
information on these exceptional objects.

A major open problem in sphere packings is to find a dimension in which
optimal arrangements are not given by a lattice. In dimensibthere exists a
non-lattice sphere packing, which is conjectured to haviglagn density than any
lattice sphere packing (see [LS70]). As shown in Table lpwedimension24
similar sphere packings have been found in dimensldnd3, 18, 20 and22. All
of them areperiodic that is, a finite union of translates of a lattice sphere ack
By a well known conjecture, attributed by Gruber [Gru07] tasg&enhaus, optimal
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sphere packings can always be attained by periodic sphekénga. It is known
that their density comes arbitrarily close to the optimdliggsee[[GL87]).

A natural idea to resolve the above mentioned open probleto i$ocally
modify” one of the optimal known lattice sphere packingg. i.in dimensions
d=4,...,8, to obtain a better non-lattice sphere packing. In this pageshow
that such modifications are not possible, if ones stays withé set of periodic
sphere packings (see Corollary 11). We more generally shoheoren 10 that
such modifications are not possible fmrfect, strongly eutactic lattices

The paper is organized as follows. In Secfidbn 2 we recall soevessary back-
ground on lattices and positive definite quadratic forms.Séttion[8 we intro-
duce the so-called Ryshkov polyhedron, and based on it we gigeometrical
interpretation of Voronoi's characterization of locallptonal lattice sphere pack-
ings. This viewpoint allows a natural generalization talgtlocal optimal periodic
sphere packings. For their study we introduce a parameteesp Sectiofl4. In
Sectiorl b we give characterizations of local optimal pedagphere packings with
up tom lattices translates. Based on these general charackenizate obtain
the main result of this paper in Sectibh 6: We show that pgrfgoongly eutac-
tic lattices argperiodic extremdsee Definitiorl B), meaning they cannot locally be
modified to yield a better periodic sphere packing.

2. BACKGROUND ON LATTICES AND QUADRATIC FORMS

A (full rank) lattice L in R is a discrete subgroup = Za; + ... + Zay
generated byl linear independent (column) vectais € R%. We say that these
vectors form abasisof L and associate it with the matriA = (ay,...,a4) €
GL4(R). We write L. = AZ?. It is well known thatL is generated in this way
precisely by the matricedU with U € GL4(Z). We refer to[[GL87] for details
and more background on lattices. Given a latficendtranslational vectorg;, for
sayi = 1,...,m, the discrete set

(1) A=Jti+L
=1
is called aperiodic (point) set
The sphere packing radiug(A) of a discrete seh in the Euclidian spac&?
(with norm || - ||) is defined as the infimum of half the distances between distin
points:
r .
Ad) =5 aof e =yl
The sphere packing radius is the largest possible radsisch that solid spheres
of radius\ around points ofA do nowhere overlap. Denoting the solid unit sphere
by B¢, thesphere packinglefined byA is the union of non-overlapping spheres

U =+ x)B7

xEA
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d | point set 8§/ vol B¢ author(s)

2 Ao 0.2886. .. Lagrange, 1773} [Lag73]

3 | A3 = D3, % 0.1767... Gau, 1840,[[Gau40]

4 Dy 0.125 Korkine & Zolotareff, 1877,[[KZ77]
5 Ds, 0.0883... Korkine & Zolotareff, 1877,[[KZ77]
6 Eg, * 0.0721... Blichfeldt, 1935, [Bli35]

7 E7, * 0.0625 Blichfeldt, 1935, [Bli35]

8 Es 0.0625 Blichfeldt, 1935, [Bli35]

9 Ng, * 0.0441...

10 P1oec 0.0390... Leech & Sloane, 1970, [LS70]
11 Pi1a 0.0351... Leech & Sloane, 1970, [LS70]
12 Kia 0.0370...

13 P34 0.0351... Leech & Sloane, 1970, [LS70]
14 /\14, * 0.0360. ..

15 A5, * 0.0441 ...

16 Mg, * 0.0625

17 /\17, * 0.0625

18 Vis 0.0750... Bierbrauer & Edel, 1998[ [BE0O]
19 /\197 * 0.0883...

20 Vag 0.1315... Vardy, 1995, [Var9b]

21 Aoy, * 0.1767...

22 Vag 0.3325... Conway & Sloane, 1996, [CS96]
23 Nog 0.5

24 Noy 1 Cohn & Kumar, 2004,[[CKQ8]

Table 1. Point sets defining best known sphere packings up to dimeggion
dimensions! < 8 andd = 24 the corresponding authors solved the lattice sphere
packing problem. The other mentioned authors found thedjslensest known
periodic sphere packings. The starmdicate that an equally dense, periodic
non-lattice sphere packing is known.

Its densityd(A) is, loosely spoken, defined as the fraction of space coveyed b
spheres. We can make this definition more precise by comsgarcubeC =
{x e RY: |z;] < 1/2} and setting
card(A N AC)

vol A\C'
It can be shown that the value 6&fis the same for any other centrally symmetric
convex bodie” (see [[GL8Y]). For general discrete sets, it may be difficoilt t
compute the density, respectively the limes inferior in dedinition. In case of
a lattice the limes inferior can simply be replaced bydet L, wheredet L =
| det A| is thedeterminanbof the latticel, = AZ?. Note that the determinant df
is independent of the particular choice of the bakid-or periodic setd as in[1)
we get the estimate

5(A) = A(A)?vol B lim inf

mA(A)?vol B¢

A) <
o(A) < det L
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with equality if and only if the lattice translatés+ L are pairwise disjoint.

Among similarity classes of lattices, hence in the space
O4(R)\GL4(R)/GL4(Z), there exist only finitely many local maxima af
up to scaling. In order to characterize and to work with thém, enumerate
them, it is convenient to use the language of maditive definite quadratic forms
(PQFs for short). These are simply identified with the;%g of real symmetric,
positive definite matrices. Given a matiX < Sgo, we setQ[z] = z'Qx for
x € RY, defining a corresponding PQF. Note that every mafix Sgo can be
decomposed int@) = A'A with A € GL,4(R) and therefores?,, can be identified
with the space);(R)\GL,(R) of lattice bases up to orthogonal transformations.
Two PQFs (respectively matrice§) and Q' are calledarithmetically equivalent
(or integrally equivalentif there exists a matriX/ € GL4(Z) with Q" = U'QU.
Thus arithmetical equivalence classes of PQFs are in coedacorrespondence
with similarity classes of lattices.

Thearithmetical minimum\(Q) of a PQFQ is defined by

AMQ) wel;l\%}Q[m]-

If L = AZ?with A € GL4(R) satisfyingQ = A*A is a corresponding lattice, there
is an immediate relation to the packing radiuslofWe have)(Q) = (2A\(L))?
and therefore

1 B4
8(L) = HQ)"* =57,
where
L ANQ)
H(Q) - (det Q)l/d

is the so-callecHermite invariantof (). Note thatH () is invariant with respect
to scalings. A classical problem in the arithmetic theorgo@dratic forms is the
determination of thélermite constant

Hy= sup H(Q).
QesY,

By the relation described above, it corresponds to deteénguitne supremum of
possible lattice sphere packing densities. Local maximae@iHermite invariant
on Sio and corresponding lattices are calledreme

3. VORONOI'S CHARACTERIZATION OF EXTREME FORMS

The Ryshkov polyhedron. Since the Hermite invariant is invariant with respect
to scaling, a natural approach of maximizing it, is to coasil forms with a fixed
arithmetical minimum, say, and minimize the determinant among them. We may
even relax the condition on the arithmetical minimum and/@afuire that it is at
leastl. In other words, we have

Ha =1/ inf(det Q)Y
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where
@ R={Qesl: Q) 21}

We refer toR asRyshkov polyhedrgras it was Ryshkov [RysT70] who noticed that
this view on Hermite’s constant allows a simplified desdénipof Voronoi's theory.

We denote bys? the space of real symmetric matrices, respectively of real g
dratic forms ind variables. It is a Euclidian vector space of dimens{6h') with
the usual inner product defined by

Z aijq;; = trace(Q - Q").

t,j=1
Because of the fundamental identity

Qlz] = (Q,za"),

quadratic formsQ € S? attaining a fixed value on a given € R?\ {0} lie all in
ahyperplangaffine subspace of co-dimensibn Thus Ryshkov polyhedr® are
intersections of infinitely mankialfspaces

(3) R=1{Q e 8% :(Q,xzx") > Nforallz € 2%\ {0}}.

It can be shown thaR is “locally like a polyhedron”, meaning that any inter-
section with goolytope(convex hull of finitely many vertices) is itself a polytope.
For a proof we refer ta_ [Sch08]. As a consequefitdasvertices edges facets
and in generak-dimensional facegk-faceg. For details on terminology and basic
properties of polytopes we refer {o [Zie97].

Perfect forms. The vertices) of the Ryshkov polyhedron aperfect forms Such
forms are characterized by the fact that they are determiniglely by their arith-
metical minimum (heré) and its representatives

MinQ = {x € Z%: Q[z] = M\(Q)}.
A corresponding lattice is called perfect too. The follogviproposition due to
Minkowski implies that the Hermite constant can only beiatd among perfect

forms, respectively, the maximal lattice sphere packintsdsg can only be attained
by perfect lattices.

Proposition 1 (Minkowski [Min05]). (det Q)l/d is a strictly concave function
onSY,

For a proof see for examplé [GLB7]. Note, that in contrastdet Q)l/d,
the functiondet Q is not a concave function 08¢ <o (cf. [Nel74]). However
Minkowski’s theorem implies that the set

(4) {Qe8%y:detQ > D}

is strictly convex forD > 0.
Another property of perfect forms which we use later is tHe¥ang.

Proposition 2. If Q € 8% is perfect, theMin @ spansR?.
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The existence ofl linear independent vectors in Q for a perfect form@
follows from the observation that the rankforms zx! with £ € Min @Q have to
spansS?, since they uniquely determirdg through the linear equation§), xx') =
A(Q). If howeverMin @ does not spaiR? then these rank-forms can maximally
span a¢)-dimensional subspace 6.

Finiteness up to equivalence.The arithmetical equivalence operatidp —
U'QU of GL4(Z) on 8¢, leavesA(Q), Min @ and alsoR invariant. In fact,
GL4(Z) acts on the sets of faces of a given dimension, thus in p&ation the sets
of vertices, edges and facets®f The following theorem shows that the Ryshkov
polyhedronR contains only finitely many arithmetically inequivalentrtiees. By
Proposition 1L this implies in particular tht; is actually attained, namely by some
perfect forms. For a proof we refer {0 [Sch08].

Theorem 3(Moronoi 1907) Up to arithmetical equivalence and scaling there exist
only finitely many perfect forms in a given dimensibhr 1.

Thus the classification of perfect forms in a given dimensiespectively the
enumeration of vertices of the Ryshkov polyhedron up tdarétical equivalence,
yields the Hermite constant. Perfect forms have been &ledsip to dimensios
(seel[DSVOY] and [Sch08]).

Characterization of extreme forms. From dimensior6 onwards not every per-
fect form is extreme (seé [Mar0D3]). In order to characteaxtgeme forms among
perfect forms the notion autaxyis used: A PQF) is calledeutactic if its inverse
Q! is contained in the (relative) interioelint V(Q) of its Voronoi domain

V(Q) = cone{xx' : € Min Q}.
Herecone M denotes theonic hull
n
{Z%’-’Bi :m e Nandx; € M,a; > 0fori = 1,...,n}
i=1

of a set)M. Note that the Voronoi domain is full-dimensional (of dinsean ("))
if and only if ) is perfect. Note also that the rankforms zz! give inequalities
(Q,zx') > 1 defining the Ryshkov polyhedron and by this the Voronoi donasi
Q is equal to thanormal cone

(5) {N e &8 (N,Q/\NQ)) < (N,Q)forall Q' € R}

of R atQ/A\(Q).
Algebraically the eutaxy conditio@ ! € relint V(Q) is equivalent to the exis-
tence of positivey,, with

(6) Q'= Z agre'.

Thus computationally eutaxy @j can be tested by solving thieear program

@) max omin ~ S.t.ag > amin and [6) holds.
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The form(@ is eutactic, if and only if the maximum is greater
Voronoi [Vor07] showed that perfectness, together wittagyimplies extremal-
ity and vice versa:

Theorem 4 (Moronoi, [MorQ7]). A PQFQ € Sio is extreme if and only i€) is
perfect and eutactic.

We here give a proof providing a geometrical viewpoint thab$ out to be quite
useful for the intended generalization discussed in tHeviohg sections.

Proof. The functiondet Q is a positive real valued polynomial &, depending
onthe(“}") different coefficients;;; of Q. Using the expansion theorem we obtain

d
detQ = qliai;
=1
for any fixed column indey € {1,...,d}. Here,¢f; = (—1)"*7 det Q; (with
Q;; the minor matrix of@@, obtained by removing rowand columny) denote the
coefficients of thadjoint formQ# = (det Q)Q~* € 8¢, of Q. Thus

(8) grad det Q = (det Q)Q !
and the tangent hyperplafiein @@ of the smootideterminantdet ()-surface
S={Q €8% :det@ =detQ}
is given by
T={Q €& (Q7Q)=(Q"Q)}

Or in other words@~! is a normal vector of the tangent plaifieof S at Q. By
Propositior 1L and the observation tHat (4) is convex, we kii@awS is contained
in the halfspace

9) {Q es’: (Q7,Q - Q) >0},

with @@ being the unique intersection point 8fand7".

As a consequence, a perfect fofpnattains a local minimum odlet  (hence
is extreme) if and only if the halfspace] (9) contains the RgshpolyhedronR,
and its boundary meef® only in (). This is easily seen to be equivalent to the
condition that the normal cone (Voronoi domaln)Q) of R at@Q containsQ ! in
its interior. O

Note that eutaxy alone does not suffice for extremality. H@mghere exist only
finitely many eutactic forms in every dimension and they éam(inciple) be enu-
merated too (see [MarD3]). Nevertheless, this seems catiqoally more difficult
than the enumeration of perfect forms (see [Sto75], [BM{EBat01], [EGS02)).
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4. PARAMETER SPACES FOR PERIODIC SETS

We want to study the more general situation of periodic gpparckings. Recall
from (1) that a periodic set with: lattice translates (am-periodic se} in R¢ is of
the form

m
(10) N =+,
i=1
with a lattice L ¢ R? and translation vector§ € R, i =1,...,m.

We want to work with a parameter space forperiodic sets similar tc‘EiO for
lattices. For this, we considéY as a linear imagd’ = AA; of astandard periodic
set

(11) Ae=Jti+ 2%
i=1

Here, A € GL4(R) satisfies in particulal, = AZ?. Since we are only interested
in properties of periodic sets up to isometries, we encdey Q = A'A € Sio,
together with then translation vectors,, . . . , t,,. Since every property of periodic
sets we deal with here is invariant up to translations, we assyme without loss
of generality that,,, = 0. Thus we consider the parameter space

d,m m—
(12) Sty =84 x RP*(m=1)

for m-periodic sets (up to isometries). We hereby in particutaregalize the space
Si’ol = 8¢, in a natural way. We call the elements @ig” periodic formsand
denote them usually b = (Q, t), whereQ € S%, and

t=(t,... ty_) € R

is a real valued matrix containinge — 1 columns with vectorg; € R?. One
should keep in mind, that although we omjf = 0, we implicitly keep it as a
translation vector. Note that a periodic 2€tas in [10) has mankepresentations
by periodic forms. In particulary, may vary and we have different choices fbr
The parameter spa&i’é” is contained in the space
(13) Sd,m _ Sd > Rdx(m—l).
Latter can be turned into a Euclidean space with inner produg, defined for
X =(Q,t)andX’ = (Q',t') by

m—1

(X, X') = (@, Q") + > tit;.

i=1
Note, for the sake of simplicity we use the same symbol foiitther products on
all spacesS®™,

We extend the definition of the arithmetical minimumby defining thegener-
alized arithmetical minimum

MX) = min{Q[t; —t; —v] : 1 <i,j <mandv € Z¢, withv £ 0if i = j}
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for the periodic formX = (Q,t) € Si’é”. Note that we have\(X) = 0 in the
case of intersecting lattice translatgs + Z9) N (t; + Z¢) # O with i # j. The
set ofrepresentations of the generalized arithmetical minindim X is the set
ofallw = t; — t; — v attaining \(X). ComputationallyMin X andA(X) can
be obtained by solving a sequenceclafsest vector problem(€VPs), one for each
pairi, j with i # 4. In addition one shortest vector problem (SVP) has to bessbhlv
taking care of the cases where- j. Implementations of algorithms solving CVPs
and SVPs are provided for exampleNAGVA [MAG] or GAP [GAP].

In order to define the sphere packing density funcﬁonSi’é” — R we set
det X = det @ for periodic formsX = (Q,t). Then

(14) 5(X) = <%>2mvol B2t

In analogy to the lattice case, we call a periodic fakime Si’(;” m-extremeif it

attains a local maximum @ within S%".
The relation[(I¥) shows that the supremuna aimongm-periodic sphere pack-
ings is up to some power and a constant factor equal to theTiletike constant”

sup A(X)/(det X))V = 1/  nf (det X))/,

Xesty

where the seR,, on the right side is thégeneralized) Ryshkov set
(15) Ry = {X e ST ANX) > 1} .

The condition\(X) > 1 gives infinitely many linear inequalities
Po(X) = Qv] = (X, (vv',0)) > 1

for v € Z?\ {0}, as in the casen = 1. Form > 1 we additionally have the
infinitely many polynomial inequalities

(16) Pijo(X) =Qlt; —t; —v] > 1,

wherei, j € {1,...,m} withi # j andv € Z?. These polynomials are of degrée
in the parameterg,;, tx; of X. Note that they are linear for a fixed Observe also
thatp; .~ andp,, ;. are special due to our assumptityy = 0 and that there is
asymmetnyp; ; » = pj,i, —v Dy Which we may restrict our attention to polynomials
with ¢ < j. In case of equality = j we have the linear functiop; ; , = ps.

5. LOCAL ANALYSIS OF PERIODIC SPHERE PACKINGS

Characterizing local optima. Before we generalize perfectness and eutaxy to a
notion of m-perfectnessand m-eutaxy(in order to obtain a sufficient condition
for a periodic form to ben-extreme from it) we discuss a rather general setting:
Assume we want to optimize a smooth function ohasic closed semialgebraic
set that is, on a region which is described by finitely many (istnict) polynomial
inequalities. LetE denote a Euclidean space with inner prodict). Further, let

f + E — R be smooth(infinitely differentiable) andy, ..., g, be (real valued)
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polynomials onE. Assume, we want to determine whether or not we have a local
minimum of f at X, on

17) G={X€eFE:g9(X)>0fori=1,...,k}.

For simplicity, we further assumgrad f)(Xo) # 0 andg;(Xo) = 0, as well as
(grad g;)(Xo) # 0, fori =1,..., k. Then, in a sufficiently small neighborhood of
X, the polynomialsf andg; can be approximated arbitrarily close by correspond-
ing affine functions. For examplgis approximated by the beginning of itaylor
series

f(Xo) + {(grad f)(Xo), X — Xo).
From this one easily derives the following well known criber (cf. for example
[JS03]) for an isolated local minimum gfat X, depending on the normal cone

V(Xo) = cone{(grad g;)(Xo) : i =1,...,k}.
The functionf attains an isolated local minimum @¥ if

(18) (grad f)(Xo) € int V(Xo),
and f does not attain a local minimum, if
(19) (grad f)(Xo) & V(Xo).

The behavior in case dfrad f)(X) € bdcone V(Xy) depends on the involved
functions f andg; and has to be treated, depending on the specific problem.

In case of the lattice sphere packing problem, we have S¢, f = det!/?
and forQy, € 82, we setg;(Q) = Qv;] — A(Qo) with (grad ¢;)(Q) = v;v!
for each pair+v; in Min Q. By Theorem# we have a local minimum of
f(Q) = (det Q)4 at Qy on G (as in [IT)) if and only ifQ is perfect and eu-
tactic, respectively ifV(Qo) is full-dimensional andgrad f)(Qo) € int V(Qo).
Here, (grad f)(Qo) is a positive multiple oQal. Thus in this special case (due
to Propositior ]l we do not have a local minimum fofn case(grad f)(Qo) €
bd cone V(Qo).

Let us consider the case of periodic sets, henc& of S%™ with m > 1.
We want to know if a periodic fornX, € Si’é“ attains a local minimum of =
det!/?. We may assuma(X,) > 0. The setMin Xj is finite and moreover, for
X = (Q,t) inasmall neighborhood of = (Qo, t°), everyt; —t;, — v € Min X
corresponds to & — t? — v € Min Xy. Thus locally atXy, the generalized
Ryshkov setR,,, is given by the basic closed semialgebraic Gadefined by the
inequalitiesp; j (X ) — A(Xo) > 0, one for each pait-(t{ — ¢} — v) in Min X.
As explained in Sectionl 4, we may assuing i < j < m andt? =0if j =m.
An elementary calculation yields

(20) (gradp; ;o) (X) = (wwt, 0,...,0,2Qw,0,...,0,—2Qw,0,...,0),

where we setX = (Q,t) and usew to abbreviatet; — t; — v. This is to be
understood as a vector 8™ = S x R¥>*(m=1) with its “S?-component” being
the ranki form ww! and its “translational-component” containing the zerotoe
0 in all, but thejsth andjth column. In casg = m, the jth column is omitted and
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in casei = j the corresponding column@s For(grad f)(X) we obtain a positive
multiple of (Q1, 0).

A sufficient condition for local m-periodic sphere packing optima. Generaliz-
ing the notion of perfectness, we say a periodic foXm= (Q,t) € sig” (and
a corresponding periodic set representedXyis m-perfectif the generalized
Voronoi domain

(21) V(X) = cone{(grad p; j»)(X) : t; — t; — v € Min X for somev € 2%}

is full dimensional, that is, iflim V(X) = dim S*™ = (*t!) + (m — 1)d. Gen-
eralizing the notion of eutaxy, we say th&t(and a corresponding periodic set) is
m-eutacticif

(Q71,0) € relint V(X).

So the general discussion at the beginning of this sectieidyithe following suf-
ficient condition for a periodic fornX to beisolated m-extreme that is, forX
having the property that any sufficiently small change wipickserves\(X), nec-
essarily lowerg(X).

Theorem 5. If a periodic formX € Si’é” is m-perfect andmn-eutactic, thenX is
isolatedm-extreme.

Note that the theorem gives a computational tool to certfglated m-
extremeness of a given periodic forfi = (Q,t) € Siﬁ”: First, we compute
Min X and use equatiof_(R0) to obtain generators of the genedaliaeonoi do-
main V(X). Next, we can computationally test wheth{€ !, 0) is in V(X) or
not (for example by solving a linear program similar[td (7}).case we can show
(Q71,0) € int V(X), the periodic formX represents an isolated-extreme pe-
riodic set. If we can showQ~!,0) ¢ V(X), the periodic formX does not rep-
resent ann-extreme periodic set. In this situation, we can even findigettion”
N € 8%™, for which we can improve the sphere packing density of theogie
form X, that is, such thad(X + eN) > §(X) for all sufficiently smalle > 0.

Remark 6. Let X € sig” with (Q71,0) ¢ V(X). Then we can improve the
sphere packing density of in direction NV given by the nearest point to(Q !, 0)
in the polyhedral cone

(22) P(X)={N e 8% (V,N) > 0forallV e V(X)}.

Note that the con@®(X) is dual to the generalized Voronoi domaii.X') and
(added toX) gives locally a linear approximation of the generalizedsiov
setR,,.

Fluid diamond packings. For generalm we are confronted with a difficulty
which does not show up in the lattice cage= 1: There may be non-isolated
m~extreme sets, which are not-perfect. Thefluid diamond packings dimen-
sion9, described by Conway and Sloane[in [CS95], give such an deamp
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Example. Theroot lattice D, can be defined by

d
Dd:{wGZd:inEO mod 2}.
=1
Thefluid diamond packingare2-periodic sets
D9<t> = Dg U (Dg + t)

with ¢ € R? such that the minimal distance among elements is equal tmihe
imum distancey/2 of Dy itself. We may choose for example = (%, e, %,a)t
with any o € R. For integersa we obtain the densest known packing lattice
Ag = Dy(ts) in dimension9, showing that it is part of a family of uncountably
many, equally densg-periodic sets.

The setsDy(t,) give examples of non-isolate2textreme sets, which ar2
eutactic, but nok-perfect. In order to see this, let us consider a representat
X, € 827 for Dy(t,). We choose a basi4 of Dy. ThenX, = (Q, A~'t,) with
Q = AlAis arepresentation dg(t,).

For non-integralkx we find Min X, = Min ) (using MAGVA for example). It
follows (for example by Lemmia 9 below) that, is 2-eutactic, but noR-perfect.
For integralo: we find

8
Min X, = MinQ U {(z1, ..., xs,0)" € {0,1}° : sz =0 mod 2}.
i=1

Thus the vectors iblin X, \ Min @ span only ar8-dimensional space. Therefore
X, is not2-perfect. Nevertheless, a corresponding calculation shbat X, is
2-eutactic, as in the case of non-integsal

In order to see thak, is non-isolated2-extreme, we can apply Propositibh 7
below. One easily checks that in case of integrghence for the latticé\lg) we
have only one degree of freedom for a local changg,ajiving an equally dense
sphere packing. In case of non-integralwe have nine degrees of freedom for
such a modification.

O

Non-isolatedm-extreme sets as in this example can only occur for periodic
forms X € sivg” if (Q~1,0) € bdV(X) (which is for example always the case
when X is m-eutactic, but noin-perfect). In this case, it is in general not clear
what an infinitesimal change of in a directionN € S%™ leads to (already as-
suming it is orthogonal t¢Q !, 0) as well as in the boundary of the sBtX)
in 22)). If 7(X) denotes the unique face P{X) containing(Q~!,0) in its rel-
ative interior, then this “set of uncertainty” is equal teetface of P(X) dual to
F(X), that is, equal to

(23) UX)={NeP(X):(V,N)=0foralV e F(X)}.

Or in other words, the sét(X) is the intersection o (X) with the hyperplane
orthogonal to(@Q~',0). Note that it is possible to determif(X) (and hence a
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description ot/ (X) by linear inequalities) computationally, using linear gram-
ming techniques.

Purely translational changes. Below we give an additional sufficient condition
for m-extremeness. For this we consider the case when all direcin/(X)
are “purely translational changésN = (0,t") € S4™. A vivid interpretation
of a purely translational change can be given by thinkinghaf ¢orresponding
modification of a periodic sphere packing. The spheres df Edtice translate are
jointly moved. If in such a local change all contacts amonigesps are lost, we
can increase their radius and obtain a new sphere packifglavger density. If
some contacts among spheres are preserved however, the pploking density
remains the same. Latter case is captured in the followioggsition, which gives
an easily testable criterion fat-extremeness. We apply this proposition in Section
[6, where we consider potential local improvements of bestknpacking lattices
to periodic non-lattice sets.

Proposition 7. For a periodic formX = (Q,t) € Si’é” with (Q71,0) €
bd V(X), lett/(X) be contained in

{(0,t") € S¥™ : ¢ =t} for atleast ond; — t; — v € Min X with v € Z}.
ThenX is (possibly non-isolated):-extreme.

Note, if X is m-eutactic (possibly notr-perfect), the set/(X) is theorthog-
onal complemeny(X)* of the linear hull ofV(X). Note also that Propositidd 7
includes in particular the special case where someZ¢ are inMin X (and there-
foret; = t; = 0 fori = j = m). This situation occurs for thg-periodic, fluid
diamond packings in the example above.

From the sphere packing interpretation of the propositisragsertion is clear.
Nevertheless, we give a proof below, based on a local alsalysfi’(;”. More
than actually needed for the proof, we analyze lioshanges locally at a periodic
form X € Si’(;” in a directionN € U(X). As a byproduct, we obtain tools
allowing a computational analysis of possible local optitpdor a given periodic
form, not necessarily covered by the proposition. Thesef@aaxample be used
in a numerical search for good periodic sphere packings.

Proof of Propositior I7.The generalized Voronoi domal X ) is spanned by gra-
dients (grad p; j »)(X) (as given in[(2D)), one for each pair of vectatsy <
Min X. The assumption that a directiovi = (Q”,t"V) is in U (X) for a periodic
form X = (Q, t), implies(Q~*, Q") = 0. Moreover, for the unique maximal face
F(X) of V(X) with (Q~1,0) € relint F(X), the condition thatV is orthogonal
to some(grad p; ;) (X) in F(X) translates into

(24) ((grad pij) (X), N) = Q¥ [w] +2(¢ —t))'Qu =0,

with w = (¢; — t; — v). Recall that in the special case= j (and form = 1
anyway)p; ;.. is linear and[(24) reduces to the conditiQi’ [w] = 0; if then N
satisfies this linear conditiom; ; .,(X + €N) is a constant function ia.
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In casep; j (X + eN) is a cubic polynomial ire we need to use higher order
information in order to judge its behavior. An elementaricakation yields for the
Hessian

(25) (hess p; ) (X)[N] = 2Q[t) — t}] + 4(t) — t})'QVw.

Now how does) change atX in direction N, assuming it is in the set of un-
certaintyl/(X)? Among the polynomialg; ; ., with N satisfying [24), the fastest
decreasing polynomial in directioN determines\(X + e¢N) for small enougk.
Thus for the local change afin direction N, we may restrict our attention to a
polynomialp; ; ., with the smallest valug_(25) of its Hessian.

By Propositiori]l we know thatet'/¢ decreases strictly & in a directionN
U(X) if and only if QV # 0.

In case of a purely translational change wig = 0, the functiondet'/? re-
mains constant. On the other hand, because_o6f (25) and@irscpositive definite,
we have(hess p; j»)(X)[N] > 0, with equality if and only ift} — ¢~ = 0. Latter
implies thatp; ; ,(X + eN) is a constant function of. Thus for purely transla-
tional changesV = (0,t") € U(X), the density functiod(X + eN) is constant
for small enough > 0, if ¢V = ¢ for some pait(i, j) with ¢; — t; — v € Min X
(for a suitablev € Z9). This proves the proposition. a

Note that our argumentation in the proof also shows #at + V) increases
for smalle > 0, in case of a purely translational chanyfe= (0,t") € U(X)
with ¢ £ ¢ for all pairs (i, j) with t; — ¢; — v € Min X (for somev € Z?).
This case corresponds to a modification of a periodic spheekipg, in which all
contacts among spheres are lost.

6. PERIODIC EXTREME SETS

A given periodic set has many representations by periodingpin space§i’5”
with varying m. For example, by choosing some sublatticeZdf we can add
additional translational parts.

Now it could happen that a periodic setwith a given representatiol € Si’gn
is m-extreme, whereas a second representalidne S is not m/-extreme.
However, it may also happen that the packing density of neesgmtation of\ can
locally be improved.

Definition 8. A periodic set igeriodic extremeif it is m-extreme for all possible
representationst € S%;".

Our main result is Theorem 110 below, giving a sufficient ctindifor a lattice
to be periodic extreme. For its statement we need the nofigtrang eutaxyor
lattices, respectively PQFs: A forta € Sgo (and a corresponding lattice) is called
strongly eutacticif

(26) Ql=a )
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for somea > 0, hence if the coefficients in the eutaxy conditibh (6) areqilal. It
is well known that a PQR) is strongly eutactic, if and only if the vectorslitin ()
form a so-calledspherical2-designwith respect ta) (see[Ven01],[[Mar03]).

Lemma 9. Any representatiolX’ € si’gb of a strongly eutactic lattice (respectively
PQF) ism-eutactic.

Proof. Let @ € S¢, be strongly eutactic, satisfying_(26) for some> 0. Let

X =(Q%,t%) ¢ Si’é” be some representation of a strongly eutactic BRE.g.
withm > 1.

For a fixedw € Min X we define an abstract graph, whose vertices are the
indices in{1,...,m}. Two verticesi andj are connected by an edge, whenever
there is some € Z? such thatw = X — tX — v. Since the periodic fornX
represents a lattice, we find that the graph is a disjointruafaycles. Or, in other
words,w induces a partitiori/y, ..., I) of {1,...,m}.

Let 7 be an index set of this partition (containing the indices tiked cycle of
the defined graph). Summing over all triplgsj, v) with 4, j € I andv € Z? such
thatw = ¢;* — ¢ — v € Min X, we find (using[(20)):

> (grad pi j.»)(X) = 2|I|(ww?, 0).
(i,w)eI?xze:
w=tX 7t3X —vEMin X
The factor2 comes from the symmetgyrad p; ; ., = grad p; ; —,. Summation over
all index setd of the partition yields

(27) Z (grad p; j.»)(X) = 2m(ww',0).
(i,7,v)e{1,..., m}2><Zd;

w=tX 7th —wEMin X

As a consequence we find by the strong eutaxy condition (26) th
(@Q71,0) = (a/2m) > (grad pi j.»)(X),

(i,4w)€{1,...,m}%xz%:
w:tf—t}x —wEMin X

with a suitablens > 0. ThusX is m-eutactic. O

Not all PQFs (or lattices) which are strongly eutactic havévé perfect. But
if a strongly eutactic PQF is in addition also perfect, thiem following theorem
shows that this is sufficient for it to be periodic extreme.té\ihat this applies in
particular to so calledtrongly perfect lattices and PQHRsee [Neb02],[Mar03]).

Theorem 10. A perfect, strongly eutactic lattice (respectively PQF)pé&riodic
extreme.

Proof. LetQ € Sgo be perfect and strongly eutactic. Hence the vectoidiin @
spanR? (by Propositiori ) and satisfl/ (26) for some> 0. Let X = (QX,tX) ¢
Si’é” be a representation ¢}, e.g. withm > 1. By Lemmd9,X is m-eutactic. If
X is m-perfect as well, we know by Theordrh 5 th#tis alsom-extreme.
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So let us assume thaf is not m-perfect, hence the generalized Voronoi do-
main (X)) is not full dimensional. We want to apply Propositidn 7. Hustwe
choose

N =N tN)cuU(X)=V(X) with N #0.
(Recall the definition ot/(X) from (23) and that/(X) = V(X)* in caseX is
m-eutactic.) By this assumption we have in particular

(N, (grad pi,j,v)(X)) =0
for all triples (i, j, v) with w = ¢* — X — v € Min X. Using equation[(27),
which we obtained in the proof of Lemria 9, we g8, (ww’, 0)) = Q™ [w] = 0
for every fixedw € Min X.

By Proposition 2 there exist linear independenty in Min X, which implies
Q"N = 0. Using [23), we obtain

(28) 0 = (N, (grad p ) (X)) = 2t — £}')'Qu.

In caset," — ¢} = 0 for some pair(i, j) we can apply Propositidi 7. Note that
this includes in particular the case- j = m (t) = ¢} = 0) if v € Z N Min X..
So we may assume that suchlo not exist.

We define an abstract graph with vertices{in...,m}: (i,j) is an edge,
whenever there is some € Z¢ such thattX — ¢tX — v € MinX. LetI be
the set of vertices (indiceg) connected by a path witlh. Then by the assump-
tion Z¢ N Min X = { the cardinality|I| of I is greater thari. Since there exist
d linearly independent vectors ¥in X (by Propositior R), the linear equations
(N, (grad p; j»)(X)) = 0 with ¢, j € I have rankd(|/| — 1). Thus by [28) and
) = 0, we deduce = 0 for all i € I; hence we can again apply Propositidn 7,
proving the theorem. a

Note that the sef used in the last paragraph of the proof can be a strict subset o
{1,...,m}. This is the case, if the graph we defined is not connectedh Ewr-
nected component corresponds to a union of translateshvehic jointly, locally
be changed, without changind X), respectivelyd(X ). For example the fluid dia-
mond packings described in the example of Sedflon 5 havethjzerty (although
Ay is not strictly eutactic).

The root latticesA;, D; and E,;, as well as the Leech lattice are known to be
perfect and strongly eutactic (cf. [Mar03]). Thus as an irdiate consequence of
Theoreni_1ID, we find that these lattices, which are known teestble lattice sphere
packing problem in dimensions< 8 andd = 24 (see Tabl¢]1), cannot locally be
improved to a periodic nhon-lattice set with greater sphaiekimg density.

Corollary 11. The latticesAy, ford > 2, Dy, ford > 3, andE, for d = 6,7, 8, as
well as the Leech lattice are periodic extreme.

A result similar to Corollary 111 for the root latticés; andD,; was obtained by
Bezdek, Bezdek and Connelly [BBC98, Remark 2.9.1]. Theithat is different
and based obelone subdivisionsAt this point it is not clear whether or not their
method can be used to obtain a more general result similanéoréni_1D.
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We also checked whether or not Theorenh 10 can be applied & dimen-
sionsd below 24. For these dimensions the so-calledghinated latticesA; and
sectionsK; of the Leech latticagive the densest known lattice sphere packings.
The latticesKk; are different fromA; (and at the same time give the densest known
lattice sphere packings) only in dimensiahs- 11,12, 13. For thesel, the lattice
K is strongly eutactic only fod = 12, whereKj; is also known af€oxeter-Todd
lattice. The laminated latticed; give the densest known packing lattices in di-
mensionsd = 9,10 andd = 14,...,24 (for d = 18, ..., 24 they coincide with
Ky). Among those values fad, the laminated latticed; are strongly eutactic
if and only if d = 15,16 or d > 20. Concluding, we cannot exclude that densest
known lattice sphere packings in dimensiahs {9, 10,11, 13,14, 17,18,19} can
locally be improved to better periodic sphere packingsthiasranalysis is required
here.
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