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8 PERFECT, STRONGLY EUTACTIC LATTICES

ARE PERIODIC EXTREME

ACHILL SCHÜRMANN

ABSTRACT. We introduce a parameter space for periodic point sets, given as
a union ofm translates of a point lattice. In it we investigate the behavior of
the sphere packing density function and derive sufficient conditions for local
optimality. Using these criteria we prove that perfect, strongly eutactic lattices
cannot be locally improved to yield a denser periodic spherepacking. This in
particular implies that the densest known lattice sphere packings in dimension
d ≤ 8 andd = 24 cannot locally be modified to yield a periodic sphere packing
with greater density.

1. INTRODUCTION

The classical and widely studiedsphere packing problemasks for a non-
overlapping arrangement of equally sized spheres in a Euclidean space, such that
the fraction of space covered by spheres is maximized. The problem arose from the
arithmetical study of positive definite quadratic forms. Bythe works Thue [Thu10]
and Hales [Hal05] the optimal arrangements of spheres are known up to dimen-
sion3. We refer to [GL87], [CS99], [Mar03] and [Sch08] for detailsand further
reading.

For reasons related to the historical roots of the sphere packing problem, special
attention has been on(point) latticesas the discrete set of sphere centers. In dimen-
sion2 thehexagonal latticeand in dimension3 theface-centered-cubic latticeyield
optimal sphere packings. For the restriction of the sphere packing problem to lat-
tices, the optimal configurations are known up to dimension8 and in dimension24
(see Table 1). Here, solutions are given by fascinating objects, the so-calledroot
latticesand theLeech Lattice. We refer to [CS99], [Mar03] and [NS] for further
information on these exceptional objects.

A major open problem in sphere packings is to find a dimension in which
optimal arrangements are not given by a lattice. In dimension 10 there exists a
non-lattice sphere packing, which is conjectured to have a higher density than any
lattice sphere packing (see [LS70]). As shown in Table 1, below dimension24
similar sphere packings have been found in dimensions11, 13, 18, 20 and22. All
of them areperiodic, that is, a finite union of translates of a lattice sphere packing.
By a well known conjecture, attributed by Gruber [Gru07] to Zassenhaus, optimal
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sphere packings can always be attained by periodic sphere packings. It is known
that their density comes arbitrarily close to the optimal value (see [GL87]).

A natural idea to resolve the above mentioned open problem isto “locally
modify” one of the optimal known lattice sphere packings, i.e. in dimensions
d = 4, . . . , 8, to obtain a better non-lattice sphere packing. In this paper we show
that such modifications are not possible, if ones stays within the set of periodic
sphere packings (see Corollary 11). We more generally show in Theorem 10 that
such modifications are not possible forperfect, strongly eutactic lattices.

The paper is organized as follows. In Section 2 we recall somenecessary back-
ground on lattices and positive definite quadratic forms. InSection 3 we intro-
duce the so-called Ryshkov polyhedron, and based on it we give a geometrical
interpretation of Voronoi’s characterization of locally optimal lattice sphere pack-
ings. This viewpoint allows a natural generalization to study local optimal periodic
sphere packings. For their study we introduce a parameter space in Section 4. In
Section 5 we give characterizations of local optimal periodic sphere packings with
up to m lattices translates. Based on these general characterizations we obtain
the main result of this paper in Section 6: We show that perfect, strongly eutac-
tic lattices areperiodic extreme(see Definition 8), meaning they cannot locally be
modified to yield a better periodic sphere packing.

2. BACKGROUND ON LATTICES AND QUADRATIC FORMS

A (full rank) lattice L in R
d is a discrete subgroupL = Za1 + . . . + Zad

generated byd linear independent (column) vectorsai ∈ R
d. We say that these

vectors form abasisof L and associate it with the matrixA = (a1, . . . ,ad) ∈
GLd(R). We writeL = AZ

d. It is well known thatL is generated in this way
precisely by the matricesAU with U ∈ GLd(Z). We refer to [GL87] for details
and more background on lattices. Given a latticeL andtranslational vectorsti, for
sayi = 1, . . . ,m, the discrete set

(1) Λ =

m
⋃

i=1

ti + L

is called aperiodic (point) set.
The sphere packing radiusλ(Λ) of a discrete setΛ in the Euclidian spaceRd

(with norm‖ · ‖) is defined as the infimum of half the distances between distinct
points:

λ(Λ) =
1

2
inf

x,y∈Λ,x6=y
‖x − y‖.

The sphere packing radius is the largest possible radiusλ such that solid spheres
of radiusλ around points ofΛ do nowhere overlap. Denoting the solid unit sphere
by Bd, thesphere packingdefined byΛ is the union of non-overlapping spheres

⋃

x∈Λ

x + λ(Λ)Bd.
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d point set δ/ vol Bd author(s)
2 A2 0.2886 . . . Lagrange, 1773, [Lag73]
3 A3 = D3, ∗ 0.1767 . . . Gau, 1840, [Gau40]
4 D4 0.125 Korkine & Zolotareff, 1877, [KZ77]
5 D5, ∗ 0.0883 . . . Korkine & Zolotareff, 1877, [KZ77]
6 E6, ∗ 0.0721 . . . Blichfeldt, 1935, [Bli35]
7 E7, ∗ 0.0625 Blichfeldt, 1935, [Bli35]
8 E8 0.0625 Blichfeldt, 1935, [Bli35]
9 Λ9, ∗ 0.0441 . . .
10 P10c 0.0390 . . . Leech & Sloane, 1970, [LS70]
11 P11a 0.0351 . . . Leech & Sloane, 1970, [LS70]
12 K12 0.0370 . . .
13 P13a 0.0351 . . . Leech & Sloane, 1970, [LS70]
14 Λ14, ∗ 0.0360 . . .
15 Λ15, ∗ 0.0441 . . .
16 Λ16, ∗ 0.0625
17 Λ17, ∗ 0.0625
18 V18 0.0750 . . . Bierbrauer & Edel, 1998, [BE00]
19 Λ19, ∗ 0.0883 . . .
20 V20 0.1315 . . . Vardy, 1995, [Var95]
21 Λ21, ∗ 0.1767 . . .
22 V22 0.3325 . . . Conway & Sloane, 1996, [CS96]
23 Λ23 0.5
24 Λ24 1 Cohn & Kumar, 2004, [CK08]

Table 1. Point sets defining best known sphere packings up to dimension 24. In
dimensionsd ≤ 8 andd = 24 the corresponding authors solved the lattice sphere
packing problem. The other mentioned authors found the listed, densest known
periodic sphere packings. The stars∗ indicate that an equally dense, periodic

non-lattice sphere packing is known.

Its densityδ(Λ) is, loosely spoken, defined as the fraction of space covered by
spheres. We can make this definition more precise by considering a cubeC =
{x ∈ R

d : |xi| ≤ 1/2} and setting

δ(Λ) = λ(Λ)d vol Bd · lim inf
λ→∞

card(Λ ∩ λC)

vol λC
.

It can be shown that the value ofδ is the same for any other centrally symmetric
convex bodiesC (see [GL87]). For general discrete sets, it may be difficult to
compute the density, respectively the limes inferior in thedefinition. In case of
a lattice the limes inferior can simply be replaced by1/det L, wheredetL =
|detA| is thedeterminantof the latticeL = AZ

d. Note that the determinant ofL
is independent of the particular choice of the basisA. For periodic setsΛ as in (1)
we get the estimate

δ(Λ) ≤ mλ(Λ)d vol Bd

detL
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with equality if and only if the lattice translatesti + L are pairwise disjoint.
Among similarity classes of lattices, hence in the space

Od(R)\GLd(R)/GLd(Z), there exist only finitely many local maxima ofδ
up to scaling. In order to characterize and to work with them,i.e. enumerate
them, it is convenient to use the language of realpositive definite quadratic forms
(PQFs for short). These are simply identified with the setSd

>0 of real symmetric,
positive definite matrices. Given a matrixQ ∈ Sd

>0, we setQ[x] = xtQx for
x ∈ R

d, defining a corresponding PQF. Note that every matrixQ ∈ Sd
>0 can be

decomposed intoQ = AtA with A ∈ GLd(R) and thereforeSd
>0 can be identified

with the spaceOd(R)\GLd(R) of lattice bases up to orthogonal transformations.
Two PQFs (respectively matrices)Q andQ′ are calledarithmetically equivalent
(or integrally equivalent) if there exists a matrixU ∈ GLd(Z) with Q′ = U tQU .
Thus arithmetical equivalence classes of PQFs are in one-to-one correspondence
with similarity classes of lattices.

Thearithmetical minimumλ(Q) of a PQFQ is defined by

λ(Q) = min
x∈Zd\{0}

Q[x].

If L = AZ
d with A ∈ GLd(R) satisfyingQ = AtA is a corresponding lattice, there

is an immediate relation to the packing radius ofL: We haveλ(Q) = (2λ(L))2

and therefore

δ(L) = H(Q)d/2 vol Bd

2d
,

where

H(Q) =
λ(Q)

(det Q)1/d

is the so-calledHermite invariantof Q. Note thatH(·) is invariant with respect
to scalings. A classical problem in the arithmetic theory ofquadratic forms is the
determination of theHermite constant

Hd = sup
Q∈Sd

>0

H(Q).

By the relation described above, it corresponds to determining the supremum of
possible lattice sphere packing densities. Local maxima ofthe Hermite invariant
onSd

>0 and corresponding lattices are calledextreme.

3. VORONOI’ S CHARACTERIZATION OF EXTREME FORMS

The Ryshkov polyhedron. Since the Hermite invariant is invariant with respect
to scaling, a natural approach of maximizing it, is to consider all forms with a fixed
arithmetical minimum, say1, and minimize the determinant among them. We may
even relax the condition on the arithmetical minimum and only require that it is at
least1. In other words, we have

Hd = 1/ inf
R

(det Q)1/d,
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where

(2) R =
{

Q ∈ Sd
>0 : λ(Q) ≥ 1

}

.

We refer toR asRyshkov polyhedron, as it was Ryshkov [Rys70] who noticed that
this view on Hermite’s constant allows a simplified description of Voronoi’s theory.

We denote bySd the space of real symmetric matrices, respectively of real qua-
dratic forms ind variables. It is a Euclidian vector space of dimension

(d+1
2

)

with
the usual inner product defined by

〈Q,Q′〉 =

d
∑

i,j=1

qijq
′
ij = trace(Q · Q′).

Because of the fundamental identity

Q[x] = 〈Q,xxt〉,
quadratic formsQ ∈ Sd attaining a fixed value on a givenx ∈ R

d \ {0} lie all in
ahyperplane(affine subspace of co-dimension1). Thus Ryshkov polyhedraR are
intersections of infinitely manyhalfspaces:

(3) R = {Q ∈ Sd
>0 : 〈Q,xxt〉 ≥ λ for all x ∈ Z

d \ {0}}.
It can be shown thatR is “locally like a polyhedron”, meaning that any inter-

section with apolytope(convex hull of finitely many vertices) is itself a polytope.
For a proof we refer to [Sch08]. As a consequenceR hasvertices, edges, facets
and in generalk-dimensional faces(k-faces). For details on terminology and basic
properties of polytopes we refer to [Zie97].

Perfect forms. The verticesQ of the Ryshkov polyhedron areperfect forms. Such
forms are characterized by the fact that they are determineduniquely by their arith-
metical minimum (here1) and its representatives

Min Q = {x ∈ Z
d : Q[x] = λ(Q)}.

A corresponding lattice is called perfect too. The following proposition due to
Minkowski implies that the Hermite constant can only be attained among perfect
forms, respectively, the maximal lattice sphere packing density can only be attained
by perfect lattices.

Proposition 1 (Minkowski [Min05]). (det Q)1/d is a strictly concave function
onSd

>0.

For a proof see for example [GL87]. Note, that in contrast to(detQ)1/d,
the functiondetQ is not a concave function onSd

>0 (cf. [Nel74]). However
Minkowski’s theorem implies that the set

(4) {Q ∈ Sd
>0 : detQ ≥ D}

is strictly convex forD > 0.
Another property of perfect forms which we use later is the following.

Proposition 2. If Q ∈ Sd is perfect, thenMin Q spansRd.
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The existence ofd linear independent vectors inMin Q for a perfect formQ
follows from the observation that the rank-1 formsxxt with x ∈ Min Q have to
spanSd, since they uniquely determineQ through the linear equations〈Q,xxt〉 =
λ(Q). If howeverMin Q does not spanRd then these rank-1 forms can maximally
span a

(d
2

)

-dimensional subspace ofSd.

Finiteness up to equivalence.The arithmetical equivalence operationQ 7→
U tQU of GLd(Z) on Sd

>0 leavesλ(Q), Min Q and alsoR invariant. In fact,
GLd(Z) acts on the sets of faces of a given dimension, thus in particular on the sets
of vertices, edges and facets ofR. The following theorem shows that the Ryshkov
polyhedronR contains only finitely many arithmetically inequivalent vertices. By
Proposition 1 this implies in particular thatHd is actually attained, namely by some
perfect forms. For a proof we refer to [Sch08].

Theorem 3(Voronoi 1907). Up to arithmetical equivalence and scaling there exist
only finitely many perfect forms in a given dimensiond ≥ 1.

Thus the classification of perfect forms in a given dimension, respectively the
enumeration of vertices of the Ryshkov polyhedron up to arithmetical equivalence,
yields the Hermite constant. Perfect forms have been classified up to dimension8
(see [DSV07] and [Sch08]).

Characterization of extreme forms. From dimension6 onwards not every per-
fect form is extreme (see [Mar03]). In order to characterizeextreme forms among
perfect forms the notion ofeutaxyis used: A PQFQ is calledeutactic, if its inverse
Q−1 is contained in the (relative) interiorrelintV(Q) of its Voronoi domain

V(Q) = cone{xxt : x ∈ Min Q}.
Herecone M denotes theconic hull

{

n
∑

i=1

αixi : m ∈ N andxi ∈ M,αi ≥ 0 for i = 1, . . . , n

}

of a setM . Note that the Voronoi domain is full-dimensional (of dimension
(

d+1
2

)

)
if and only if Q is perfect. Note also that the rank-1 formsxxt give inequalities
〈Q,xxt〉 ≥ 1 defining the Ryshkov polyhedron and by this the Voronoi domain of
Q is equal to thenormal cone

(5) {N ∈ Sd : 〈N,Q/λ(Q)〉 ≤ 〈N,Q′〉 for all Q′ ∈ R}
of R atQ/λ(Q).

Algebraically the eutaxy conditionQ−1 ∈ relintV(Q) is equivalent to the exis-
tence of positiveαx with

(6) Q−1 =
∑

x∈MinQ

αxxxt.

Thus computationally eutaxy ofQ can be tested by solving thelinear program

(7) max αmin s.t.αx ≥ αmin and (6) holds.
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The formQ is eutactic, if and only if the maximum is greater0.
Voronoi [Vor07] showed that perfectness, together with eutaxy implies extremal-

ity and vice versa:

Theorem 4 (Voronoi, [Vor07]). A PQF Q ∈ Sd
>0 is extreme if and only ifQ is

perfect and eutactic.

We here give a proof providing a geometrical viewpoint that turns out to be quite
useful for the intended generalization discussed in the following sections.

Proof. The functiondet Q is a positive real valued polynomial onSd, depending
on the

(

d+1
2

)

different coefficientsqij of Q. Using the expansion theorem we obtain

detQ =

d
∑

i=1

q#
jiqij

for any fixed column indexj ∈ {1, . . . , d}. Here,q#
ij = (−1)i+j detQij (with

Qij the minor matrix ofQ, obtained by removing rowi and columnj) denote the
coefficients of theadjoint formQ# = (det Q)Q−1 ∈ Sd

>0 of Q. Thus

(8) grad det Q = (det Q)Q−1

and the tangent hyperplaneT in Q of the smoothdeterminant-det Q-surface

S = {Q′ ∈ Sd
>0 : det Q′ = detQ}

is given by

T = {Q′ ∈ Sd : 〈Q−1, Q′〉 = 〈Q−1, Q〉}.
Or in other words,Q−1 is a normal vector of the tangent planeT of S atQ. By

Proposition 1 and the observation that (4) is convex, we knowthatS is contained
in the halfspace

(9) {Q′ ∈ Sd : 〈Q−1, Q′ − Q〉 ≥ 0},

with Q being the unique intersection point ofS andT .
As a consequence, a perfect formQ attains a local minimum ofdetQ (hence

is extreme) if and only if the halfspace (9) contains the Ryshkov polyhedronR,
and its boundary meetsR only in Q. This is easily seen to be equivalent to the
condition that the normal cone (Voronoi domain)V(Q) of R atQ containsQ−1 in
its interior. �

Note that eutaxy alone does not suffice for extremality. However, there exist only
finitely many eutactic forms in every dimension and they can (in principle) be enu-
merated too (see [Mar03]). Nevertheless, this seems computationally more difficult
than the enumeration of perfect forms (see [Sto75], [BM96],[Bat01], [EGS02]).
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4. PARAMETER SPACES FOR PERIODIC SETS

We want to study the more general situation of periodic sphere packings. Recall
from (1) that a periodic set withm lattice translates (anm-periodic set) in R

d is of
the form

(10) Λ′ =
m
⋃

i=1

t′i + L,

with a latticeL ⊂ R
d and translation vectorst′i ∈ R

d, i = 1, . . . ,m.
We want to work with a parameter space form-periodic sets similar toSd

>0 for
lattices. For this, we considerΛ′ as a linear imageΛ′ = AΛt of astandard periodic
set

(11) Λt =

m
⋃

i=1

ti + Z
d.

Here,A ∈ GLd(R) satisfies in particularL = AZ
d. Since we are only interested

in properties of periodic sets up to isometries, we encodeΛ′ by Q = AtA ∈ Sd
>0,

together with them translation vectorst1, . . . , tm. Since every property of periodic
sets we deal with here is invariant up to translations, we mayassume without loss
of generality thattm = 0. Thus we consider the parameter space

(12) Sd,m
>0 = Sd

>0 × R
d×(m−1)

for m-periodic sets (up to isometries). We hereby in particular generalize the space
Sd,1

>0 = Sd
>0 in a natural way. We call the elements ofSd,m

>0 periodic formsand
denote them usually byX = (Q, t), whereQ ∈ Sd

>0 and

t = (t1, . . . , tm−1) ∈ R
d×(m−1)

is a real valued matrix containingm − 1 columns with vectorsti ∈ R
d. One

should keep in mind, that although we omittm = 0, we implicitly keep it as a
translation vector. Note that a periodic setΛ′ as in (10) has manyrepresentations
by periodic forms. In particular,m may vary and we have different choices forA.
The parameter spaceSd,m

>0 is contained in the space

(13) Sd,m = Sd × R
d×(m−1).

Latter can be turned into a Euclidean space with inner product 〈·, ·〉, defined for
X = (Q, t) andX ′ = (Q′, t′) by

〈X,X ′〉 = 〈Q,Q′〉 +

m−1
∑

i=1

tt
it

′
i.

Note, for the sake of simplicity we use the same symbol for theinner products on
all spacesSd,m.

We extend the definition of the arithmetical minimumλ, by defining thegener-
alized arithmetical minimum

λ(X) = min{Q[ti − tj − v] : 1 ≤ i, j ≤ m andv ∈ Z
d, with v 6= 0 if i = j}
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for the periodic formX = (Q, t) ∈ Sd,m
>0 . Note that we haveλ(X) = 0 in the

case of intersecting lattice translates(ti + Z
d) ∩ (tj + Z

d) 6= ∅ with i 6= j. The
set of representations of the generalized arithmetical minimumMin X is the set
of all w = ti − tj − v attainingλ(X). Computationally,Min X andλ(X) can
be obtained by solving a sequence ofclosest vector problems(CVPs), one for each
pair i, j with i 6= j. In addition one shortest vector problem (SVP) has to be solved,
taking care of the cases wherei = j. Implementations of algorithms solving CVPs
and SVPs are provided for example inMAGMA [MAG] or GAP [GAP].

In order to define the sphere packing density functionδ : Sd,m
>0 → R we set

detX = detQ for periodic formsX = (Q, t). Then

(14) δ(X) =

(

λ(X)

(det X)1/d

)
d
2

m vol Bd/2d.

In analogy to the lattice case, we call a periodic formX ∈ Sd,m
>0 m-extreme, if it

attains a local maximum ofδ within Sd,m
>0 .

The relation (14) shows that the supremum ofδ amongm-periodic sphere pack-
ings is up to some power and a constant factor equal to the “Hermite like constant”

sup
X∈Sd,m

>0

λ(X)/(det X)1/d = 1/ inf
X∈Rm

(detX)1/d,

where the setRm on the right side is the(generalized) Ryshkov set

(15) Rm =
{

X ∈ Sd,m
>0 : λ(X) ≥ 1

}

.

The conditionλ(X) ≥ 1 gives infinitely many linear inequalities

pv(X) = Q[v] = 〈X, (vvt, 0)〉 ≥ 1

for v ∈ Z
d \ {0}, as in the casem = 1. For m > 1 we additionally have the

infinitely many polynomial inequalities

(16) pi,j,v(X) = Q[ti − tj − v] ≥ 1,

wherei, j ∈ {1, . . . ,m}with i 6= j andv ∈ Z
d. These polynomials are of degree3

in the parametersqkl, tkl of X. Note that they are linear for a fixedt. Observe also
thatpi,m,v andpm,j,v are special due to our assumptiontm = 0 and that there is
a symmetrypi,j,v = pj,i,−v by which we may restrict our attention to polynomials
with i ≤ j. In case of equalityi = j we have the linear functionpi,j,v = pv.

5. LOCAL ANALYSIS OF PERIODIC SPHERE PACKINGS

Characterizing local optima. Before we generalize perfectness and eutaxy to a
notion of m-perfectnessand m-eutaxy(in order to obtain a sufficient condition
for a periodic form to bem-extreme from it) we discuss a rather general setting:
Assume we want to optimize a smooth function on abasic closed semialgebraic
set, that is, on a region which is described by finitely many (non-strict) polynomial
inequalities. LetE denote a Euclidean space with inner product〈·, ·〉. Further, let
f : E → R be smooth(infinitely differentiable) andg1, . . . , gk be (real valued)
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polynomials onE. Assume, we want to determine whether or not we have a local
minimum off atX0 on

(17) G = {X ∈ E : gi(X) ≥ 0 for i = 1, . . . , k}.
For simplicity, we further assume(grad f)(X0) 6= 0 andgi(X0) = 0, as well as

(grad gi)(X0) 6= 0, for i = 1, . . . , k. Then, in a sufficiently small neighborhood of
X0, the polynomialsf andgi can be approximated arbitrarily close by correspond-
ing affine functions. For examplef is approximated by the beginning of itsTaylor
series

f(X0) + 〈(grad f)(X0),X − X0〉.
From this one easily derives the following well known criterion (cf. for example
[JS03]) for an isolated local minimum off atX0, depending on the normal cone

V(X0) = cone{(grad gi)(X0) : i = 1, . . . , k}.
The functionf attains an isolated local minimum onG, if

(18) (grad f)(X0) ∈ intV(X0),

andf does not attain a local minimum, if

(19) (grad f)(X0) 6∈ V(X0).

The behavior in case of(grad f)(X0) ∈ bdconeV(X0) depends on the involved
functionsf andgi and has to be treated, depending on the specific problem.

In case of the lattice sphere packing problem, we haveE = Sd, f = det1/d

and forQ0 ∈ Sd
>0 we setgi(Q) = Q[vi] − λ(Q0) with (grad gi)(Q) = viv

t
i

for each pair±vi in Min Q0. By Theorem 4 we have a local minimum of
f(Q) = (det Q)1/d at Q0 on G (as in (17)) if and only ifQ0 is perfect and eu-
tactic, respectively ifV(Q0) is full-dimensional and(grad f)(Q0) ∈ intV(Q0).
Here,(grad f)(Q0) is a positive multiple ofQ−1

0 . Thus in this special case (due
to Proposition 1 we do not have a local minimum off in case(grad f)(Q0) ∈
bdconeV(Q0).

Let us consider the case of periodic sets, hence ofE = Sd,m with m > 1.
We want to know if a periodic formX0 ∈ Sd,m

>0 attains a local minimum off =

det1/d. We may assumeλ(X0) > 0. The setMin X0 is finite and moreover, for
X = (Q, t) in a small neighborhood ofX0 = (Q0, t

0), everyti − tj −v ∈ Min X
corresponds to at0

i − t0
j − v ∈ Min X0. Thus locally atX0, the generalized

Ryshkov setRm is given by the basic closed semialgebraic setG defined by the
inequalitiespi,j,v(X) − λ(X0) ≥ 0, one for each pair±(t0

i − t0
j − v) in Min X0.

As explained in Section 4, we may assume1 ≤ i ≤ j ≤ m andt0
j = 0 if j = m.

An elementary calculation yields

(20) (grad pi,j,v)(X) = (wwt,0, . . . ,0, 2Qw,0, . . . ,0,−2Qw,0, . . . ,0),

where we setX = (Q, t) and usew to abbreviateti − tj − v. This is to be
understood as a vector inSd,m = Sd × R

d×(m−1), with its “Sd-component” being
the rank-1 form wwt and its “translational-component” containing the zero-vector
0 in all, but theith andjth column. In casej = m, thejth column is omitted and
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in casei = j the corresponding column is0. For(grad f)(X) we obtain a positive
multiple of (Q−1,0).

A sufficient condition for local m-periodic sphere packing optima. Generaliz-
ing the notion of perfectness, we say a periodic formX = (Q, t) ∈ Sd,m

>0 (and
a corresponding periodic set represented byX) is m-perfect if the generalized
Voronoi domain

(21) V(X) = cone{(grad pi,j,v)(X) : ti − tj − v ∈ Min X for somev ∈ Z
d}

is full dimensional, that is, ifdimV(X) = dimSd,m =
(

d+1
2

)

+ (m − 1)d. Gen-
eralizing the notion of eutaxy, we say thatX (and a corresponding periodic set) is
m-eutacticif

(Q−1,0) ∈ relintV(X).

So the general discussion at the beginning of this section yields the following suf-
ficient condition for a periodic formX to be isolatedm-extreme, that is, forX
having the property that any sufficiently small change whichpreservesλ(X), nec-
essarily lowersδ(X).

Theorem 5. If a periodic formX ∈ Sd,m
>0 is m-perfect andm-eutactic, thenX is

isolatedm-extreme.

Note that the theorem gives a computational tool to certify isolated m-
extremeness of a given periodic formX = (Q, t) ∈ Sd,m

>0 : First, we compute
Min X and use equation (20) to obtain generators of the generalized Voronoi do-
mainV(X). Next, we can computationally test whether(Q−1,0) is in V(X) or
not (for example by solving a linear program similar to (7)).In case we can show
(Q−1,0) ∈ intV(X), the periodic formX represents an isolatedm-extreme pe-
riodic set. If we can show(Q−1,0) 6∈ V(X), the periodic formX does not rep-
resent anm-extreme periodic set. In this situation, we can even find a “direction”
N ∈ Sd,m, for which we can improve the sphere packing density of the periodic
form X, that is, such thatδ(X + ǫN) > δ(X) for all sufficiently smallǫ > 0.

Remark 6. Let X ∈ Sd,m
>0 with (Q−1,0) 6∈ V(X). Then we can improve the

sphere packing density ofX in directionN given by the nearest point to−(Q−1,0)
in the polyhedral cone

(22) P(X) = {N ∈ Sd,m : 〈V,N〉 ≥ 0 for all V ∈ V(X)}.
Note that the coneP(X) is dual to the generalized Voronoi domainV(X) and

(added toX) gives locally a linear approximation of the generalized Ryshkov
setRm.

Fluid diamond packings. For generalm we are confronted with a difficulty
which does not show up in the lattice casem = 1: There may be non-isolated
m-extreme sets, which are notm-perfect. Thefluid diamond packingsin dimen-
sion9, described by Conway and Sloane in [CS95], give such an example.
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Example. Theroot latticeDd can be defined by

Dd = {x ∈ Z
d :

d
∑

i=1

xi ≡ 0 mod 2}.

Thefluid diamond packingsare2-periodic sets

D9〈t〉 = D9 ∪ (D9 + t)

with t ∈ R
9 such that the minimal distance among elements is equal to themin-

imum distance
√

2 of D9 itself. We may choose for exampletα = (1
2 , . . . , 1

2 , α)t

with any α ∈ R. For integersα we obtain the densest known packing lattice
Λ9 = D9〈tα〉 in dimension9, showing that it is part of a family of uncountably
many, equally dense2-periodic sets.

The setsD9〈tα〉 give examples of non-isolated2-extreme sets, which are2-
eutactic, but not2-perfect. In order to see this, let us consider a representation
Xα ∈ S9,2

>0 for D9〈tα〉. We choose a basisA of D9. ThenXα = (Q,A−1tα) with
Q = AtA is a representation ofD9〈tα〉.

For non-integralα we findMin Xα = Min Q (usingMAGMA for example). It
follows (for example by Lemma 9 below) thatXα is 2-eutactic, but not2-perfect.
For integralα we find

Min Xα = Min Q ∪ {(x1, . . . , x8, 0)
t ∈ {0, 1}9 :

8
∑

i=1

xi ≡ 0 mod 2}.

Thus the vectors inMin Xα \Min Q span only an8-dimensional space. Therefore
Xα is not 2-perfect. Nevertheless, a corresponding calculation shows thatXα is
2-eutactic, as in the case of non-integralα.

In order to see thatXα is non-isolated2-extreme, we can apply Proposition 7
below. One easily checks that in case of integralα (hence for the latticeΛ9) we
have only one degree of freedom for a local change oftα giving an equally dense
sphere packing. In case of non-integralα we have nine degrees of freedom for
such a modification.

�

Non-isolatedm-extreme sets as in this example can only occur for periodic
formsX ∈ Sd,m

>0 if (Q−1,0) ∈ bdV(X) (which is for example always the case
whenX is m-eutactic, but notm-perfect). In this case, it is in general not clear
what an infinitesimal change ofX in a directionN ∈ Sd,m leads to (already as-
suming it is orthogonal to(Q−1,0) as well as in the boundary of the setP(X)
in (22)). If F(X) denotes the unique face ofV(X) containing(Q−1,0) in its rel-
ative interior, then this “set of uncertainty” is equal to the face ofP(X) dual to
F(X), that is, equal to

(23) U(X) = {N ∈ P(X) : 〈V,N〉 = 0 for all V ∈ F(X)}.
Or in other words, the setU(X) is the intersection ofP(X) with the hyperplane
orthogonal to(Q−1,0). Note that it is possible to determineF(X) (and hence a
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description ofU(X) by linear inequalities) computationally, using linear program-
ming techniques.

Purely translational changes. Below we give an additional sufficient condition
for m-extremeness. For this we consider the case when all directions inU(X)
are “purely translational changes” N = (0, tN ) ∈ Sd,m. A vivid interpretation
of a purely translational change can be given by thinking of the corresponding
modification of a periodic sphere packing. The spheres of each lattice translate are
jointly moved. If in such a local change all contacts among spheres are lost, we
can increase their radius and obtain a new sphere packing with larger density. If
some contacts among spheres are preserved however, the sphere packing density
remains the same. Latter case is captured in the following proposition, which gives
an easily testable criterion form-extremeness. We apply this proposition in Section
6, where we consider potential local improvements of best known packing lattices
to periodic non-lattice sets.

Proposition 7. For a periodic formX = (Q, t) ∈ Sd,m
>0 with (Q−1,0) ∈

bdV(X), letU(X) be contained in

{(0, tN ) ∈ Sd,m : tN
i = tN

j for at least oneti − tj − v ∈ Min X with v ∈ Z
d}.

ThenX is (possibly non-isolated)m-extreme.

Note, if X is m-eutactic (possibly notm-perfect), the setU(X) is theorthog-
onal complementV(X)⊥ of the linear hull ofV(X). Note also that Proposition 7
includes in particular the special case where somev ∈ Z

d are inMin X (and there-
fore ti = tj = 0 for i = j = m). This situation occurs for the2-periodic, fluid
diamond packings in the example above.

From the sphere packing interpretation of the proposition its assertion is clear.
Nevertheless, we give a proof below, based on a local analysis in Sd,m

>0 . More
than actually needed for the proof, we analyze howδ changes locally at a periodic
form X ∈ Sd,m

>0 in a directionN ∈ U(X). As a byproduct, we obtain tools
allowing a computational analysis of possible local optimality for a given periodic
form, not necessarily covered by the proposition. These canfor example be used
in a numerical search for good periodic sphere packings.

Proof of Proposition 7.The generalized Voronoi domainV(X) is spanned by gra-
dients (grad pi,j,v)(X) (as given in (20)), one for each pair of vectors±w ∈
Min X. The assumption that a directionN = (QN , tN ) is in U(X) for a periodic
form X = (Q, t), implies〈Q−1, QN 〉 = 0. Moreover, for the unique maximal face
F(X) of V(X) with (Q−1,0) ∈ relintF(X), the condition thatN is orthogonal
to some(grad pi,j,v)(X) in F(X) translates into

(24) 〈(grad pi,j,v)(X), N〉 = QN [w] + 2(tN
i − tN

j )tQw = 0,

with w = (ti − tj − v). Recall that in the special casei = j (and form = 1

anyway)pi,j,v is linear and (24) reduces to the conditionQN [w] = 0; if then N
satisfies this linear condition,pi,j,v(X + ǫN) is a constant function inǫ.
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In casepi,j,v(X + ǫN) is a cubic polynomial inǫ we need to use higher order
information in order to judge its behavior. An elementary calculation yields for the
Hessian

(25) (hess pi,j,v)(X)[N ] = 2Q[tN
i − tN

j ] + 4(tN
i − tN

j )tQNw.

Now how doesδ change atX in directionN , assuming it is in the set of un-
certaintyU(X)? Among the polynomialspi,j,v with N satisfying (24), the fastest
decreasing polynomial in directionN determinesλ(X + ǫN) for small enoughǫ.
Thus for the local change ofδ in directionN , we may restrict our attention to a
polynomialpi,j,v with the smallest value (25) of its Hessian.

By Proposition 1 we know thatdet1/d decreases strictly atX in a directionN ∈
U(X) if and only if QN 6= 0.

In case of a purely translational change withQN = 0, the functiondet1/d re-
mains constant. On the other hand, because of (25) and sinceQ is positive definite,
we have(hess pi,j,v)(X)[N ] ≥ 0, with equality if and only iftN

i − tN
j = 0. Latter

implies thatpi,j,v(X + ǫN) is a constant function ofǫ. Thus for purely transla-
tional changesN = (0, tN ) ∈ U(X), the density functionδ(X + ǫN) is constant
for small enoughǫ ≥ 0, if tN

i = tN
j for some pair(i, j) with ti − tj − v ∈ Min X

(for a suitablev ∈ Z
d). This proves the proposition. �

Note that our argumentation in the proof also shows thatδ(X + ǫN) increases
for small ǫ > 0, in case of a purely translational changeN = (0, tN ) ∈ U(X)
with tN

i 6= tN
j for all pairs(i, j) with ti − tj − v ∈ Min X (for somev ∈ Z

d).
This case corresponds to a modification of a periodic sphere packing, in which all
contacts among spheres are lost.

6. PERIODIC EXTREME SETS

A given periodic set has many representations by periodic forms, in spacesSd,m
>0

with varying m. For example, by choosing some sublattice ofZ
d, we can add

additional translational parts.
Now it could happen that a periodic setΛ with a given representationX ∈ Sd,m

>0

is m-extreme, whereas a second representationX ′ ∈ Sd,m′
is not m′-extreme.

However, it may also happen that the packing density of no representation ofΛ can
locally be improved.

Definition 8. A periodic set isperiodic extreme, if it is m-extreme for all possible
representationsX ∈ Sd,m

>0 .

Our main result is Theorem 10 below, giving a sufficient condition for a lattice
to be periodic extreme. For its statement we need the notion of strong eutaxyfor
lattices, respectively PQFs: A formQ ∈ Sd

>0 (and a corresponding lattice) is called
strongly eutactic, if

(26) Q−1 = α
∑

x∈MinQ

xxt
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for someα > 0, hence if the coefficients in the eutaxy condition (6) are allequal. It
is well known that a PQFQ is strongly eutactic, if and only if the vectors inMin Q
form a so-calledspherical2-designwith respect toQ (see [Ven01], [Mar03]).

Lemma 9. Any representationX ∈ Sd,m
>0 of a strongly eutactic lattice (respectively

PQF) ism-eutactic.

Proof. Let Q ∈ Sd
>0 be strongly eutactic, satisfying (26) for someα > 0. Let

X = (QX , tX) ∈ Sd,m
>0 be some representation of a strongly eutactic PQFQ, e.g.

with m > 1.
For a fixedw ∈ Min X we define an abstract graph, whose vertices are the

indices in{1, . . . ,m}. Two verticesi andj are connected by an edge, whenever
there is somev ∈ Z

d such thatw = tX
i − tX

j − v. Since the periodic formX
represents a lattice, we find that the graph is a disjoint union of cycles. Or, in other
words,w induces a partition(I1, . . . , Ik) of {1, . . . ,m}.

Let I be an index set of this partition (containing the indices of afixed cycle of
the defined graph). Summing over all triples(i, j,v) with i, j ∈ I andv ∈ Z

d such
thatw = tX

i − tX
j − v ∈ Min X, we find (using (20)):

∑

(i,j,v)∈I2×Z
d:

w=tX
i

−tX
j

−v∈MinX

(grad pi,j,v)(X) = 2|I|(wwt,0).

The factor2 comes from the symmetrygrad pi,j,v = grad pj,i,−v. Summation over
all index setsI of the partition yields

(27)
∑

(i,j,v)∈{1,...,m}2×Z
d:

w=tX
i

−tX
j

−v∈Min X

(grad pi,j,v)(X) = 2m(wwt,0).

As a consequence we find by the strong eutaxy condition (26) that

(Q−1,0) = (α/2m)
∑

(i,j,v)∈{1,...,m}2×Z
d:

w=tX
i

−tX
j

−v∈MinX

(grad pi,j,v)(X),

with a suitableα > 0. ThusX is m-eutactic. �

Not all PQFs (or lattices) which are strongly eutactic have to be perfect. But
if a strongly eutactic PQF is in addition also perfect, then the following theorem
shows that this is sufficient for it to be periodic extreme. Note that this applies in
particular to so calledstrongly perfect lattices and PQFs(see [Neb02], [Mar03]).

Theorem 10. A perfect, strongly eutactic lattice (respectively PQF) isperiodic
extreme.

Proof. Let Q ∈ Sd
>0 be perfect and strongly eutactic. Hence the vectors inMin Q

spanR
d (by Proposition 2) and satisfy (26) for someα > 0. Let X = (QX , tX) ∈

Sd,m
>0 be a representation ofQ, e.g. withm > 1. By Lemma 9,X is m-eutactic. If

X is m-perfect as well, we know by Theorem 5 thatX is alsom-extreme.
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So let us assume thatX is not m-perfect, hence the generalized Voronoi do-
mainV(X) is not full dimensional. We want to apply Proposition 7. For this we
choose

N = (QN , tN ) ∈ U(X) = V(X)⊥ with N 6= 0.

(Recall the definition ofU(X) from (23) and thatU(X) = V(X)⊥ in caseX is
m-eutactic.) By this assumption we have in particular

〈N, (grad pi,j,v)(X)〉 = 0

for all triples (i, j,v) with w = tX
i − tX

j − v ∈ Min X. Using equation (27),
which we obtained in the proof of Lemma 9, we get〈N, (wwt,0)〉 = QN [w] = 0
for every fixedw ∈ Min X.

By Proposition 2 there existd linear independentw in Min X, which implies
QN = 0. Using (24), we obtain

(28) 0 = 〈N, (grad pi,j,v)(X)〉 = 2(tN
i − tN

j )tQw.

In casetN
i − tN

j = 0 for some pair(i, j) we can apply Proposition 7. Note that
this includes in particular the casei = j = m (tN

i = tN
j = 0) if v ∈ Z

d ∩ Min X.
So we may assume that suchv do not exist.

We define an abstract graph with vertices in{1, . . . ,m}: (i, j) is an edge,
whenever there is somev ∈ Z

d such thattX
i − tX

j − v ∈ Min X. Let I be
the set of vertices (indices)i, connected by a path withm. Then by the assump-
tion Z

d ∩ Min X = ∅ the cardinality|I| of I is greater than1. Since there exist
d linearly independent vectors inMin X (by Proposition 2), the linear equations
〈N, (grad pi,j,v)(X)〉 = 0 with i, j ∈ I have rankd(|I| − 1). Thus by (28) and
tN
m = 0, we deducetN

i = 0 for all i ∈ I; hence we can again apply Proposition 7,
proving the theorem. �

Note that the setI used in the last paragraph of the proof can be a strict subset of
{1, . . . ,m}. This is the case, if the graph we defined is not connected. Each con-
nected component corresponds to a union of translates, which can jointly, locally
be changed, without changingλ(X), respectivelyδ(X). For example the fluid dia-
mond packings described in the example of Section 5 have thisproperty (although
Λ9 is not strictly eutactic).

The root latticesAd, Dd andEd, as well as the Leech lattice are known to be
perfect and strongly eutactic (cf. [Mar03]). Thus as an immediate consequence of
Theorem 10, we find that these lattices, which are known to solve the lattice sphere
packing problem in dimensionsd ≤ 8 andd = 24 (see Table 1), cannot locally be
improved to a periodic non-lattice set with greater sphere packing density.

Corollary 11. The latticesAd, for d ≥ 2, Dd, for d ≥ 3, andEd for d = 6, 7, 8, as
well as the Leech lattice are periodic extreme.

A result similar to Corollary 11 for the root latticesAd andDd was obtained by
Bezdek, Bezdek and Connelly [BBC98, Remark 2.9.1]. Their method is different
and based onDelone subdivisions. At this point it is not clear whether or not their
method can be used to obtain a more general result similar to Theorem 10.
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We also checked whether or not Theorem 10 can be applied to other dimen-
sionsd below 24. For these dimensions the so-calledlaminated latticesΛd and
sectionsKd of the Leech latticegive the densest known lattice sphere packings.
The latticesKd are different fromΛd (and at the same time give the densest known
lattice sphere packings) only in dimensionsd = 11, 12, 13. For thesed, the lattice
Kd is strongly eutactic only ford = 12, whereKd is also known asCoxeter-Todd
lattice. The laminated latticesΛd give the densest known packing lattices in di-
mensionsd = 9, 10 andd = 14, . . . , 24 (for d = 18, . . . , 24 they coincide with
Kd). Among those values ford, the laminated latticesΛd are strongly eutactic
if and only if d = 15, 16 or d ≥ 20. Concluding, we cannot exclude that densest
known lattice sphere packings in dimensionsd ∈ {9, 10, 11, 13, 14, 17, 18, 19} can
locally be improved to better periodic sphere packings. Further analysis is required
here.
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[Thu10] A. Thue,Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene,
Norske Vid. Selsk. Skr.1 (1910), 1–9.

[Var95] A. Vardy,A new sphere packing in20 dimensions, Invent. Math.121(1995), 119–133.
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