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Abstract — Amongst the more exciting phenomena in the field of nonlinear partial
differential equations is the Lavrentiev phenomenon which occurs in the calculus of
variations. We prove that a conforming finite element method fails if and only if the
Lavrentiev phenomenon is present. Consequently, nonstandard finite element methods
have to be designed for the detection of the Lavrentiev phenomenon in the computa-
tional calculus of variations.
We formulate and analyze a general strategy for solving variational problems in the
presence of the Lavrentiev phenomenon based on a splitting and penalization strategy.
We establish convergence results under mild conditions on the stored energy function.
Moreover, we present practical strategies for the solution of the discretized problems
and for the choice of the penalty parameter.
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1. Introduction

The calculus of variations is concerned with the minimisation problem

inf E(A1) := inf
v∈A1

E(v), (1)
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where E : A1 → R ∪ {+∞} and where A1 (or more generally Ap) is the first-order Sobolev
space

Ap := W 1,p
0 (Ω; Rm) = {v ∈ W 1,p(Ω)m : v|∂Ω = 0},

based on a bounded Lipschitz domain Ω ⊂ Rn with piecewise hyperplanar boundary ∂Ω.
We shall assume throughout that E is proper on A∞, i.e., there exists v ∈ A∞ so that

E(v) < +∞. In particular, A∞ ⊂ A1 always implies

−∞ 6 inf E(A1) 6 inf E(A∞) < +∞.

The Lavrentiev phenomenon, named after its first occurence in the literature [18], is the
surprising property that, in some some variational problems,

inf E(A1) < inf E(A∞). (L)

Other well-known examples are the one-dimensional examples of Mania [23] and of Ball and
Mizel [7, 6], or the convex example of Foss, Hrusa and Mizel [16]. In nonlinear elasticity, the
Lavrentiev phenomenon is closely related to the occurence of cavitation [4].

For the conforming finite element discretization of (1) assume we are given a family of
finite element spaces

V0, V1, V2, · · · ⊂ ∪∞`=0V` ⊆ A∞,

to solve the discrete minimization problem

inf E(V`) := inf
v`∈V`

E(v`). (2)

The respective infimal energies are possibly convergent towards some limit

inf E(A∞) 6 lim inf
`→∞

inf E(V`).

We say that the finite element method (FEM) is convergent if E and the sequence of discrete
subspaces V0, V1, V2, . . . allow for

inf E(A1) = lim
`→∞

inf E(V`). (C)

Therein, the convergence of the entire sequence of energy minima (not merely of some
subsequence but for all subsequences) is part of the statement as well as the equality of that
limit to inf E(A1).

However, since conforming finite element functions are always Lipschitz continuous any
finite element space V` is contained in A∞ and hence standard finite element methods cannot
compute singular minimisers, that is, if (L) holds then

inf E(A1) < inf E(A∞) 6 inf E(V`).

In particular, it follows that (C) implies that (L) is false. Section 2 below provides a general
framework that allows for the converse and establishes

(C) ⇐⇒ NOT (L)

under natural assumptions on the energy density.
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A consequence of this equivalence is that conforming finite element methods are inappro-
priate tools for detecting the singular minimisers associated to the Lavrentiev phenomenon
(L).

Several classes of numerical schemes have been introduced in the literature to allow for a
numerical detection of (L), including the penalty method of Ball and Knowles [5, 17] and its
extension to polyconvex integrands by Negron–Marrero [24], the element-removal method of
Li [19, 20], and the truncation method of Li, and Bai and Li [1, 2, 21].

Section 3 introduces a general concept for the construction of a new class of splitting and
penalty methods. We establish general convergence results in Sections 4 and 5. In Section
6 we discuss some connections of our results with the theory of Γ-convergence.

Similarly as in the methods of Ball & Knowles [5] and of Negron–Marrero [24] we decouple
a problematic variable, for example the gradient ∇u, by introducing a new variable η in its
place and then penalizing the difference ∇u− η. The main difference between the methods
[5, 24] and our approach is how this penalization is achieved. While [5, 24] use a constraint
of the form

‖∇u− η‖Lp 6 ε,

we add a penalization term

ε−1Ψ(∇u, η)

to the total energy functional. Moreover, we design this penalization term with practical
implementation issues in mind. For example, by choosing a non-differentiable penalty func-
tional (similar to an L1-norm), we obtain the desirable property that the difference ∇u− η
is non-zero only in a small subregion of the computational domain.

As a result of our careful design of the penalty functional our method is potentially easier
to use and more efficient in practise. In particular, we also include a detailed description of
a practical implementation and various computational examples in the final section of the
paper.

In [25, 26] non-conforming finite element methods were analyzed as an alternative to
the penalty methods discussed in the present paper. The main advantage of non-conforming
methods is that they require no penalty parameter. However, even though this is a promising
new direction, it is at present entirely unclear how to generalize the results in [25, 26] to the
vectorial non-convex case. By contrast, our convergence results in the present paper hold
under far less restrictive conditions on the stored energy functions.

2. Finite Element Failure is Equivalent to the Lavrentiev Phe-
nomenon

This section is devoted to the proof of the equivalence of (C) and NOT (L), in a general
setting which is entirely free of growth conditions and notions of convexity. However, we
assume uniform convergence of the mesh-size to zero in the finite element methods as well
as global continuity of the energy density.

Suppose that T1, T2, T3, . . . is a sequence of regular triangulations into simplices of a
Lipschitz domain Ω ⊂ Rn with piecewise flat boundary ∂Ω that is perfectly matched by the
triangulations. Suppose that the triangulation is shape regular in the sense that the largest n
dimensional ball inside each simplex T and the smallest ball outside have uniformly bounded
ratios: There exists a universal positive constant Cshaperegular, which does not depend on T



4 C. Carstensen, and C. Ortner

or `, such that one finds midpoints mT and MT , and radii rT and RT , satisfying

B(mT , rT ) ⊂ T ⊂ B(MT , RT ) and RT/rT 6 Cshaperegular.

We assume throughout that the mesh-size tends to zero, written h` → 0, by which we mean
that

lim
`→∞

max
T∈T`

RT = 0.

The finite-dimensional space V` of piecewise affine finite element functions (piecewise with
respect to the triangulation T`),

V` := {v` ∈ C0(Ω; Rm) : ∀T ∈ T`, v`|T affine }

belongs to A∞. For future reference we also define

P0(T`) := {v` ∈ L1(Ω) : ∀T ∈ T`, v`|T constant },
P1(T`) := {v` ∈ C(Ω; Rm) : ∀T ∈ T`, v`|T affine }, and

P1
0(T`) := {v` ∈ C0(Ω; Rm) : ∀T ∈ T`, v`|T affine }.

Note that with this notation, V` = P1(T`) ∩ A∞ = P1
0(T`). In the following sections we will

redefine V` in order take into account nonhomogeneous boundary conditions.
Let the energy density W : Ω× Rm × Rm×n → R be continuous and define the energy

E(v) :=

∫
Ω

W (x, v(x), Dv(x))dx

for all v ∈ A∞. In fact, if v is Lipschitz continuous, then the set of triples {(x, v(x), Dv(x)) :
x ∈ Ω̄} as well as the set {W (x, v(x), Dv(x)) : x ∈ Ω̄} are contained in compact sets.
Consequently, E(v) ∈ R and E : A∞ → R is well defined. For an arbitrary function v ∈ A1

this is no longer clear. Throughout this section we simply assume that

E : A1 → R ∪ {+∞}

is some extension of E|A∞ . In applications, this may be guaranteed by growth control
from below and we refer to the literature (e.g., [12]) for this well-understood argument in
the direct method of the calculus of variations. The question of attainment of a global
or discrete minimum is irrelevant here and bypassed by a consequent discussion of infima
instead of minima, e.g., for any ` = 0, 1, 2, . . . ,

E` := inf E(V`) := inf
v`∈V`

E(v`) ∈ R ∪ {±∞}.

We emphasize that there is no nestedness assumption on the finite element spaces and so the
convergence of the infimal energies E` does not follow automatically. In fact, it is stated in
the following theorem as a conclusion. We remark that an extension of the following result
to non-homogeneous Dirichlet conditions is not straightforward since, by approximating the
boundary condition, the discrete admissible set would not be contained in A∞ any more.

Theorem 2.1 Finite Element Failure ⇔ Lavrentiev Phenomenon. If W : Ω̄ ×
Rm × Rm×n → R is continuous then lim`→∞E` = inf E(A∞) and, in particular,

lim
`→∞

E` = inf E(A1) ⇐⇒ inf E(A1) = inf E(A∞).
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The direction =⇒ in the theorem’s assertion is obvious from the introduction and V` ⊂
A∞:

inf E(A∞) 6 lim inf
`→∞

E` = inf E(A1) 6 inf E(A∞).

The converse ⇐= requires a density argument stated in terms of the nodal interpolation
operator. Given a continuous function v : Ω → Rm and a triangulation T` the nodal inter-
polation v` := I`v of v is defined on each simplex T ∈ T` with vertices z1, . . . , zn+1 through
linear interpolation of the values v(zj) at the n+ 1 vertices zj.

Lemma 2.1. There exists a constant C, which depends only on Cshaperegular, such that,
for any v ∈ W 1,∞(Ω; Rm), the piecewise affine function v` = I`v satisfies

‖v`‖W 1,∞(Ω) 6 C‖v‖W 1,∞(Ω) for all ` = 0, 1, 2, . . . .

Moreover, v` → v in L∞(Ω; Rm), and Dv` → Dv pointwise a.e. in Ω, as `→∞.

Proof. The stability of the nodal interpolation operator as well as the convergence in the
L∞-norm are standard results and can, for example, be found in [10].

The theorem of Rademacher implies that, for almost all x in some simplex T , Dv(x)
exists in the sense of a Fréchet derivative, i.e.,

Dv(x)(y − x) = v(y)− v(x) + o(|x− y|),

for some function y 7→ o(|x− y|) with

lim
y→x

o(|x− y|)/|x− y| = 0.

Fix some x ∈ Ω so that, for any ` ∈ N0, x lies in the interior of an element T ∈ T` then

Dv(x)(zj − zk) = v`(zj)− v`(zk) + o(|x− zj|) + o(|x− zk|)
= Dv`(x)(zj − zk) + o(|x− zj|) + o(|x− zk|) for all j, k = 1, . . . , n+ 1,

where | · | denotes the `2-norm of a vector, or as below, the Frobenius norm of a matrix. Since
the tangential vectors are linearly independent and the interior angles do not deteriorate we
have

sup
j,k=1,...,n+1

(Dv(x)−Dv`(x))(zj − zk) > c|Dv(x)−Dv`(x)|rT ,

where c depends only on Cshaperegular. It now follows easily that

lim
`→∞
|Dv(x)−Dv`(x)| = 0.

Proof of Theorem 2.1. Given v ∈ A∞ and its nodal interpolant v` := I`v for all ` ∈ N0,
the previous lemma shows that

lim
`→∞

(v`(x), Dv`(x)) = (v(x), Dv(x)) ∈ Rm × Rm×n for a.e. x ∈ Ω.

Since W is continuous this yields pointwise convergence of the energy density

lim
`→∞

W (x, v`(x), Dv`(x)) = W (x, v(x), Dv(x)) for a.e. x ∈ Ω.
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Furthermore, the boundedness of v` in W 1,∞(Ω) and the assumption that W is continuous
implies that W (x, v`(x), Dv`(x)) is bounded uniformly in x and `. Consequently, Lebesgue’s
dominated convergence theorem shows

lim
`→∞

∫
Ω

W (x, v`(x), Dv`(x))dx =

∫
Ω

W (x, v(x), Dv(x))dx = E(v).

Therefore,

inf E(A∞) 6 lim inf
`→∞

E` 6 lim sup
`→∞

E` 6 lim
`→∞

E(v`) = E(v).

Since v was an arbitrary element in A∞, we deduce

lim inf
`→∞

E` = lim sup
`→∞

E` = inf E(A∞).

In particular, we can conclude that lim`E` = inf E(A∞) exists. From this, the assertion of
Theorem 2.1 follows immediately.

3. Penalisation and Discrete Scheme

In many examples there exists a coupling function

γ : Ω× Rm × Rm×n →M

where M ≡ Rµ is a space of matrices, and an extended energy density

φ : Ω× Rm × Rm×n ×M→ R

such that the energy density W is given by

W (x, v, F ) := φ(x, v, F, γ(x, v, F ))

for all x ∈ Ω, v ∈ Rm, F ∈ Rm×n. In this case, we also define

Φ(v, η) :=

∫
Ω

φ(x, v(x), Dv(x), η(x))dx for (v, η) ∈ A1 × L1(Ω; M),

and, with the abbreviation γ(·, v,Dv)(x) := γ(x, v(x), Dv(x)) for x ∈ Ω, we observe that

E(v) = Φ(v, γ(·, v,Dv)). (3)

Example 3.1 Polyconvex Materials. By definition, at almost all material points x ∈
Ω and all v ∈ Rm, a polyconvex energy density W (x, v, ·) : Rm×n → R can be written in the
form

W (x, v, F ) = φ(x, v, γ(F )),

where φ is convex in its third component (with x, v fixed), and γ : Rm×n → M maps a
deformation gradient F to the vector of minors (sub-determinants) of F and M is the space
of all those minors (e.g. M = R19 for m = n = 3 and M = R5 for m = n = 2).
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Example 3.2 Decoupling the Gradient. For stored energy functions W : Ω×Rm ×
Rm×n → R where no obvious coupling mechanism is present, it is sometimes useful to let
M = Rm×n and consider

φ(x, v, F, η) := W (x, v, η) and γ(x, v, F ) := F.

This decoupling of the gradient variable will help us to overcome the Lavrentiev gap phe-
nomenon.

On the continuous level this looks as a trivial complication of the formulation but the
point is that the discretisation relaxes the condition

η = γ(x, v, F ) in W (x, v, F ) = φ(x, v, F, η).

Since the immediate substitution cannot detect singular minimisers with a Lavrentiev phe-
nomenon the ‘coupling’ η = γ(x, v(x), Dv(x)) will be weakened by introducing a penalty
functional,

Ψ` : L1(Ω; M)× L1(Ω; M)→ R ∪ {+∞},

which is written, via some density ψ` : Ω×M×M→ [0,∞], as

Ψ`(η, ζ) :=

∫
Ω

ψ`(x, η(x), ζ(x))dx for η, ζ ∈ L1(Ω; M).

The proposed discrete minimisation problem reads: Minimise the discrete energy

E`(v, η) := Φ(v, η) + Ψ`(η, γ(·, v,Dv))

over (v, η) ∈ V` × Y` where V` and Y` are suitable finite element spaces.

Example 3.3 Penalisation. A typical class of distance functionals is given for 1 6 p <
∞ and positive parameters ε` which possibly depend on the position x in the spatial domain
(e.g., piecewise constant with respect to the triangulation T`) and

ψ`(x, η, ζ) := ε−1
` |η − ζ|

p

for all x ∈ Ω and η, ζ ∈M.

4. Polyconvex Energy Densities

An important class of energy functionals, especially in the field of nonlinear elasticity, are
those where the stored energy density is polyconvex. As a prototypical model problem, we
consider the stored energy density

W (x, u, F ) = φ(x, F, detF )− f(x) · u, (4)

where f ∈ Lq(Ω)n for some q > 1, and φ : Ω × Rn×n × R → [0,+∞], n > 2. We assume
throughout this section that φ satisfies

|F |n + Γ(η) . φ(x, F, η) . 1 + |F |n + Γ(η), and

φ(x, ·, ·) is convex and l.s.c. in Rn×n × R for a.a. x ∈ Ω,
(5)
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where Γ : R→ [0,+∞] is convex and has superlinear growth, i.e., lim inf |s|→∞ Γ(s)/s = +∞
[3, 11]. We remark that the growth condition |F |n + Γ(η) may be replaced by |F |p for some
p > n. In fact, the latter implies the former.

The space of admissible functions is defined as

V = uD +W 1,n
0 (Ω)n,

where uD ∈ W 1,n(Ω)n and E(uD) < +∞. Under these conditions the minimization problem

u ∈ argminE(V ) (6)

has at least one solution [12, Theorem 2.10].
To discretize the problem we fix a sequence uD,` ∈ P1(T`)n such that uD,` → uD strongly

in W 1,n(Ω)n, and we discretize V and L1(Ω), respectively, by

V` = uD,` + P1
0(T`)n, and Y` = P0(T`).

We remark that, throughout, V denotes the admissible set, V` the discrete admissible set,
and Y` the discrete admissible set for the penalty variable.

Further, we assume that we have a penalty functional Ψ : L1(Ω)2 → [0,+∞] such that,
for all sequences (η`) and (ζ`) ⊂ L1(Ω),

Ψ(η`, ζ`)→ 0 ⇔ ‖η` − ζ`‖L1 → 0. (7)

Given a sequence ε` ↘ 0, we discretize (6) by

(u`, ξ`) ∈ argminE`(V`, Y`),

where

E`(v`, η`) = Φ(v`, η`) + ε−1
` Ψ(detDv`, η`)

=

∫
Ω

(
φ(x,Dv`, η`)− f · v`

)
dx+ ε−1

` Ψ(detDv`, η`).

Theorem 4.1. Assume that (4), (5), and (7) hold. Then there exists a sequence ε` ↘ 0
such that, for any sequence (u`, ξ`) ∈ V` ×X` of approximate minimizers, that is,

|E`(u`, ξ`)− inf E`(V`, Y`)| → 0 as `→∞,

we have
Φ(u`, ξ`)→ inf E(V ) and ε−1

` Ψ(detDu`, ξ`)→ 0.

Moreover, the family {u`; ` ∈ N} is precompact in the weak topology of W 1,n(Ω)n and each
accumulation point u is a minimizer of E in V . In particular, there exists a subsequence
`k ↗∞ such that

u`k ⇀ u weakly in W 1,n(Ω)n,

ξ`k ⇀ detDu weakly in L1(Ω),

where u solves (6).

The proof of Theorem 4.1 is contained in the following three lemmas.
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Lemma 4.1. Assume that (4), (5) and (7) hold. For every v ∈ V there exists a sequence
(v`, η`) ∈ V` × Y` such that

v` → v strongly in W 1,n(Ω)n, (8)

lim
`→∞

Ψ(detDv`, η`) = 0, and (9)

lim
`→∞

Φ(v`, η`) = Φ(v, detDv) = E(v). (10)

Proof. Let v ∈ V . If E(v) = +∞, then we take an arbitrary sequence v` ∈ V` converging
strongly in W 1,n(Ω)n to v, and η` = detDv`. From the lower semicontinuity of E we obtain
that E(v`) = Φ(v`, η`) → ∞ as ` → +∞, since, otherwise, E(v) would be finite. Moreover,
we have Ψ(detDv`, η`) = 0.

We may now assume that E(v) < ∞. We take an arbitrary sequence v` ∈ V` such that
v` → v strongly in W 1,n(Ω)n which also implies detDv` → detDv strongly in L1(Ω). The
variable η` ∈ Y` is defined as

η`(x) = |T |−1

∫
T

detDv dx x ∈ T ∈ T`.

It follows that η` → detDv strongly in L1(Ω) and in particular that Ψ(detDv`, η`) → 0.
Thus, we have shown (8) and (9).

To prove (10) we first use Jensen’s inequality to estimate, for x ∈ T ∈ T`,

Γ(η`(x)) = Γ
(
|T |−1

∫
T

detDv dx
)
6 |T |−1

∫
T

Γ(detDv)dx =: Γ`(x),

i.e., Γ` is a majorant for Γ(η`). From its definition, and since Γ(detDv) ∈ L1(Ω) (which
follows from the fact that E(v) is finite), it follows immediately that Γ` → Γ(detDv) strongly
in L1(Ω).

Hence, we obtain that

φ(x,Dv`, η`) . 1 + |Dv`|n + Γ` =: a`,

where a` is strongly convergent in L1(Ω). For any subsequence we can extract a further
subsequence such that (Dv`, η`) → (Dv, η) pointwise, and hence we can use a variant of
Lebesgue’s dominated convergence theorem [15, Sec. 1.3, Th. 4] to deduce (10).

Lemma 4.2. Assume that (4), (5), and (7) hold. There exists a sequence ε` ↘ 0 such
that

lim sup
`→∞

minE`(V`, Y`) 6 minE(V ). (11)

Proof. Let u ∈ argminE(V ) and let (u`, ξ`) be the sequence constructed in Lemma 4.1
(for v = u). Then

Ψ(detDu`, ξ`)→ 0,

and chosing ε` = Ψ(detDu`, ξ`)
1/2 we obtain

lim sup
`→∞

inf E`(V`, Y`) 6 lim sup
`→∞

E`(u`, ξ`) = E(u).
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In the previous lemma, we showed that it is possible to choose a sequence ε` such that
the upper bound (11) holds. It remains to show that the limit is in fact equal.

Lemma 4.3. Assume that (4), (5), and (7) hold. Suppose that a sequence ε` ↘ 0 is
fixed. Suppose furthermore that u` ∈ V`, ξ` ∈ Y` such that

lim sup
`→∞

E`(u`, ξ`) 6 inf E(V ), (12)

then there exists a subsequence `k ↑ ∞ and u ∈ argminE(V ) such that

u`k ⇀ u weakly in W 1,n(Ω)n

ξ`k ⇀ detDu weakly in L1(Ω),

and moreover, we have separate convergence of the entire sequences of energy contributions:

Φ(u`, ξ`)→ E(u), and ε−1
` Ψ(detDu`, ξ`)→ 0.

Proof. It follows from (12) that E`(u`, ξ`) is bounded by some constant M . Using (5)
and the assumption that uD has finite energy, we obtain

M > E`(u`, ξ`) & ‖∇u`‖nLn − C‖u`‖Lq′ +

∫
Ω

Γ(ξ`)dx+ ε−1
` Ψ(detDu`, ξ`),

and since W 1,n(Ω)n is continuously embedded in Lq
′
(Ω)n, there exists M ′ ∈ R such that

‖u`‖nW 1,n +

∫
Ω

Γ(ξ`)dx+ ε−1
` Ψ(detDu`, ξ`) 6M ′.

We can therefore deduce the existence of a subsequence `k ↗ ∞, and of functions u ∈
W 1,n(Ω)n and ξ ∈ L1(Ω) such that

u` ⇀ u weakly in W 1,n(Ω)n and ξ` ⇀ ξ weakly in L1(Ω).

(We note that the superlinear bound implies equi-integrability of the sequence (ξ`) which
implies its precompactness in the weak tolopogy of L1(Ω) [14, Cor. IV.8.11].)

Since detDu` ⇀
′ detDu in the sense of distributions [12, Sec. 4.2, Th. 2.6, (5)], and

using (7), it follows that ξ = detDu. Using sequential weak lower semi-continuity of energies
with convex integrands [12, Sec. 3.3, Th. 3.4] we can estimate

E(u) 6 lim inf
k→∞

∫
Ω

(
φ(x, u`k , ξ`k)− f · u`k

)
dx

6 lim inf
k→∞

∫
Ω

(
φ(x, u`k , ξ`k)− f · u`k

)
dx

+ lim sup
k→∞

ε−1
`k

Ψ(detDu`k , ξ`k)

6 lim sup
`→∞

E`(u`, ξ`) 6 inf E(V ).

It follows therefore that E(u) = inf E(V ). Moreover, this implies that all inequalities in the
above chain of estimates must be equalities, and hence,

lim sup
k→∞

ε−1
`k

Ψ(detDu`k , ξ`k) = 0.

Since the proof applies also if we begin with an arbitrary subsequence, it follows that the
energy of the entire sequence converges in this sense.
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Proof of Theorem 4.1. Lemma 4.2 guarantees the existence of a sequence ε` ↘ 0 such
that the conditions of Lemma 4.3 are satisfied. Hence, Lemma 4.3 guarantees the existence of
a weakly convergent subsequence of approximate minimizers E` and establishes the various
convergence statements in the theorem.

Remark 4.1. 1. In practise, the condition that Ψ is continuous in the strong topology
of L1(Ω; Rn) requires that Ψ takes the form

Ψ(η, ζ) =

∫
Ω

ψ(|η − ζ|)dx,

where ψ has 1-growth at infinity. Typical penalty densities ψ are ψ(t) = |t|, or, if one prefers
a smooth functional, ψ(t) = (t2 + 1)1/2− 1. The condition (7) can be obtained, for example,
by requiring that ψ > 0 and ψ(t) = 0 if and only if t = 0.

2. If φ satisfies a stronger growth condition, for example φ(x, F, g) & |F |p for some
p > n then this additional integrability allows us to use a penalty functional which is only
continuous in Lp/n(Ω; Rn).

3. We have only shown the existence of some sequence ε` for which we obtain convergence
of the penalty method. We will show in Section 7 below how this sequence can be constructed
in practise.

4. More general polyconvex material models where φ depends on all minors of the gradient
can be easily incorporated in our analysis. One would then have to decouple all minors which
appear in the definition of the functional. Similar convergence can then be obtained whenever
the growth conditions from above and below are the same and are sufficiently strong so that
the direct method can be applied.

5. Examples with Lavrentiev Phenomenon

In many problems decoupling the gradient is sufficient, and it is the goal of this section to
make this precise. This is possible whenever W is convex in the third component, but it is
also a useful approach if it is unclear which variable should be relaxed. We begin again with
a more general discussion which we then make precise at two classes of problems, general
one-dimensional functionals with continuous integrands, and higher-dimensional examples
with mild v-dependence of the integrand.

We assume throughout that W = φ : Ω × Rm × Rm×n → (−∞,+∞] is lower semi-
continuous in all three variables, continuous at every point (x, v, η) where φ(x, v, η) < ∞,
and that it satisfies the lower bound

φ(x, v, η) & −1− |v|q, (13)

where 1 6 q < n/(n− 1) if n > 2 and 1 6 q < ∞ if n = 1. This implies in particular that,
for v ∈ W 1,1(Ω)m and η ∈ L1(Ω)m×n, the functionals

Φ(v, η) =

∫
Ω

W (x, v, η)dx, and E(v) = Φ(v,Dv)

are well-defined in (−∞,+∞]. Let uD ∈ W 1,1(Ω)m such that E(uD) < ∞ and define
V = uD +W 1,1

0 (Ω)m.
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We will assume that the penalty has 1-growth, namely, that there exists a continuous
penalty density ψ : Rm×n → [0,∞) satisfying

|η| − 1 . ψ(η) . |η|+ 1 for all η ∈ Rm×n, and

ψ(η) = 0 if and only if η = 0,
(14)

such that the functional Ψ is of the form

Ψ(η, ζ) =

∫
Ω

ψ(η − ζ)dx for all η, ζ ∈ L1(Ω)m×n. (15)

To discretize the problem of minimizing E over V we take uD,` ∈ P1(T`) such that
uD,` → uD strongly in W 1,1(Ω)m, and define

V` = uD,` + P1
0(T`)m and Y` = P0(T`)m×n

to discretize, respectively, the variables u and η. We approximate Φ using the midpoint rule:
For v` ∈ P1(T`)m, we set v̄`(x) = (v`)T := |T |−1

∫
T
v` dx for x ∈ T ∈ T`, and for v` ∈ V` and

η` ∈ Y`, we define

Φ`(v`, η`) =

∫
Ω

φ(x̄`, v̄`, η`)dx =
∑
T∈T`

|T |φ
(
(x)T , (v`)T , η`|T

)
.

The functional Φ` is extended in an obvious way to V` × L1(Ω)m×n.

Remark 5.1. We could have included a quadrature approximation in our analysis in
Section 4 as well. For the sake of simplicity, we decided not to do so. In the present case,
we are in fact unable to prove convergence of the penalty method without the quadrature
approximation. The reason for this is essentially that we have chosen η` ∈ P0(T`)m×n and
hence we can only adjust its value to a single point within each element. Since we assume
no control on φ from above we cannot control an integral over an element from information
at a single quadrature point.

Our first aim is an approximation result akin to Lemma 4.1. In Lemma 5.1 below we
reduce this task to the following general condition which can be quite easily checked for
different problems: for all v ∈ V there exists a function ζ ∈ L1(Ω)m×n and a sequence
v` ∈ V` such that the following conditions are satisfied:

(i) φ(x, v, ζ) ∈ L1(Ω),

(ii) v` → v strongly in W 1,1(Ω)m, and (16)

(iii) lim sup
`→∞

Φ`(v`, ζ) 6 Φ(v, ζ).

Example 5.1 1D Examples. Suppose that n = 1, that φ : Ω × Rm × Rm → R is
globally continuous, and assume that uD,` = uD for all `. This class includes in particular
problems of Maniá type [7, 23].

We now prove that (16) holds under this assumption. Let v ∈ V and let v` be its piecewise
affine nodal interpolant. Then v` → v strongly inW 1,1(Ω)m, (x̄`, v̄`(x))→ (x, v(x)) uniformly
in Ω and, since φ is globally continuous,

Φ`(v`, ζ)→ Φ(v, ζ)

for any fixed ζ ∈ Rm. �
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Example 5.2 Weak Coupling of u and Du. Suppose that, in addition to (13),

φ(x, v, η) . |v|q + Γ(η), (17)

where Γ : Rm×n → [0,+∞] is proper. We note that this class includes in particular the
example of Foss, Hrusa, and Mizel [16] and Ball’s example of cavitation [4].

We now prove that (16) holds under this assumption. Let v ∈ V and take v` ∈ V`
converging strongly in W 1,1(Ω)m∩Lq(Ω)m to v. In particular, we also have v̄` → v strongly in
Lq(Ω)m by Lebesgue’s differentiation theorem. Further, let ζ ∈ Rm×n such that Γ(ζ) < +∞.
In view of the growth condition imposed in (17) we obtain φ(x, v(x), ζ) ∈ L1(Ω). Let `j ↗∞
be a subsequence such that

lim sup
`→∞

Φ`(v`, ζ) = lim
j→∞

Φ`j (v`j , ζ).

Upon extracting a further subsequence we may assume that (x̄`j , v̄`j )→ (x, v) pointwise a.e.
in Ω. Since φ(x, v(x), ζ) ∈ L1(Ω) it is finite for a.a. x ∈ Ω and hence continuous at those
points. We therefore obtain

lim
j→∞

φ(x̄j, v̄j, ζ) = φ(x, v, ζ) pointwise a.e. in Ω.

The majorant
φ(x̄`j , v̄`j , ζ) 6 |v̄`j |q + Γ(ζ)

is strongly convergent in L1(Ω) and hence we can use Fatou’s Lemma to obtain (16) (iii). �

Having shown that (16) indeed holds for several interesting problem classes we establish
the basic approximation result, which it implies.

Lemma 5.1. Fix ε > 0 and suppose that (14), (15) and (16) hold; then, for every v ∈ V
there exists a sequence (v`, η`) ∈ V` × Y` such that

lim sup
`→∞

[
Φ(v`, η`) + ε−1Ψ(Dv`, η`)

]
6 E(v).

Moreover, the sequence v` can be chosen independent of the value of ε.

Proof. We take the sequence v` specified in (16). For every T ∈ T` and x ∈ T we define

φ̄`(x) = inf
ξ∈Rm×n

[
φ(x̄`(x), v̄`(x), ξ) + ε−1ψ(ξ −Dv`(x))

]
.

Since v̄` and x̄` are piecewise constant φ̄` may also be chosen as a piecewise constant function
and it follows from the growth condition on φ from below that it is finite. In particular, it
is measurable and its integral is well-defined with a value in (−∞,+∞].

There exists a subsequence `j ↗∞ such that

lim sup
`→∞

∫
Ω

φ̄` dx = lim
j→∞

∫
Ω

φ̄`j , and

(v̄`j , Dv`j )→ (v,Dv) pointwise a.e. in Ω.

From the definition of φ̄`, we have

φ̄` 6 φ(x̄`, v̄`, Dv) + ε−1ψ(Dv −Dv`) for a.a. x ∈ Ω,
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and since we assumed that φ is continuous at every point where it is finite, and that ψ is
globally continuous, we obtain

lim sup
j→∞

φ̄`j (x) 6 φ(x, v(x), Dv(x)) for a.a. x ∈ Ω. (18)

Again using the definition of φ̄` we obtain the majorant

φ̄` 6 φ(x̄`, v̄`, ζ) + ε−1ψ(ζ −Dv`) =: m`,

where ζ ∈ L1(Ω)m×n is taken from (16). Since φ is continuous at (x, v(x), ζ(x)), for a.a.
x ∈ Ω, it follows from (16) (ii) that

m`j (x)→ m(x) := φ(x, v(x), ζ(x)) + ε−1ψ(ζ(x)−Dv(x)) for a.a. x ∈ Ω.

Condition (16) (iii) translates as

lim inf
j→∞

∫
Ω

m`j dx 6
∫

Ω

mdx.

Applying Fatou’s lemma to the sequence m` − φ̄` gives∫
Ω

lim inf
j→∞

(m`j − φ̄`j )dx 6 lim inf
j→∞

∫
Ω

(m`j − φ̄`j )dx,

which can, equivalently, be written as∫
Ω

(
m− lim sup

j→∞
φ̄`j
)
dx 6

∫
Ω

mdx− lim sup
j→∞

∫
Ω

φ̄`jdx,

and hence we obtain, using (18) in the last inequality,

lim sup
`→∞

∫
Ω

φ̄` dx = lim sup
j→∞

∫
Ω

φ̄`j dx 6
∫

Ω

lim sup
j→∞

φ̄`j dx 6 E(v).

It remains to show that there exists a sequence η` ∈ Y` such that

lim sup
`→∞

∫
Ω

φ̄` dx = lim sup
`→∞

Φ`(v`, η`).

To this end we choose η` ∈ Y`, such that

φ(x̄`, v̄`(x), η`(x)) 6 φ̄`(x) + 1/` for a.e. x ∈ Ω.

The existence of such functions follows from the definition of φ̄`.

Next, we will deduce from Lemma 5.1 the existence of a sequence ε` ↘ 0 for which the
same upper bound still holds.

Lemma 5.2. Suppose that (14), (15) and (16) hold; then there exists a sequence ε` ↘ 0
such that

lim sup
`→∞

inf E`(V`, Y`) 6 inf E(V ).
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Proof. Let vk ∈ V such that E(vk) 6 inf E(V )+1/k. According to Lemma 5.1, for every
k ∈ N, there exists `k ∈ N such that, for all ` > `k,

inf
(u`,ξ`)∈V`×Y`

[
Φ`(u`, ξ`) + kΨ(ξ`, Du`)

]
6 E(vk) + 1/k 6 inf E(V ) + 2/k.

We may assume that `k 6 `k+1 for all k. If we define

ε` = 1/k for `k 6 ` < `k+1, k = 1, 2, . . . ,

and ε` = 1 for 1 6 ` < `1, then ε` ↘ 0 and

inf E`(V`, Y`) 6 inf E(V ) + 2ε` for all ` > `1.

We only need to prove a lower bound now. Here, we distinguish two cases: whether φ is
convex in the third component or only quasiconvex.

We adopt assumption (ii) in the following theorem as an abstract compactness assump-
tion that we found difficult to verify for examples where we observe it in practise, such as
the Foss/Hrusa/Mizel example in Section 7.5. Failure of this assumption will normally be
displayed as an instability in the numerical calculation.

Theorem 5.1 Convex Energies. Suppose that (14), (15) and (16) hold, and assume
in addition that φ is convex in its third component. Let ε` ↘ 0 be the sequence established
in Lemma 5.2, and let (u`, ξ`) ∈ V` × Y` be a sequence satisfying the following conditions:

(i) (u`, ξ`) are approximate minimizers, i.e.,

|E`(u`, ξ`)− inf E`(V`, Y`)| → 0 as `→∞. (19)

(ii) There exists u ∈ V such that

u` ⇀ u weakly in W 1,1(Ω)m. (20)

Then u ∈ argminE(V ),

lim
`→∞

Φ`(u`, ξ`) = E(u),

lim
`→∞

ε−1
` Ψ(ξ`, Du`) = 0, and (21)

ξ` ⇀ Du weakly in L1(Ω)m×n.

Proof. By the construction of ε` and assumption (19) we have

lim sup
`→∞

E`(u`, ξ`) 6 inf E(V ).

In particular, Ψ(ξ`, Du`) . ε` → 0 which implies ξ` ⇀ Du weakly in L1(Ω)m×n. We can
therefore deduce that

E(u) 6 lim inf
`→∞

Φ`(u`, ξ`).

Using the same arguments as in the proof of Lemma 4.3 we can conclude the proof of the
theorem.
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In addition to assumption (ii) in Theorem 5.1 we require another stability assumption in
the quasiconvex case. Assumption (iii) in the following theorem will be satisfied whenever
singularities occur only in localized regions. This is again observed in typical numerical
experiments but would be very difficult to prove rigorously.

Theorem 5.2 Quasiconvex Energies. Suppose that (14), (15) and (16) hold, and as-
sume in addition that φ is quasiconvex in its third component. Let ε` ↘ 0 be the sequence
established in Lemma 5.2 and let (u`, ξ`) ∈ V` × Y` be a sequence satisfying (i) and (ii) in
Theorem 5.1, as well as:

(iii) There exists a monotone family of subsets Ωk ↗ Ω such that

lim
`→∞

∥∥φ(x̄`, ū`, Du`)− φ(x̄`, ū`, ξ`)
∥∥
L1(Ωk)

= 0 and (22)

∀k ∈ N sup
`>k
‖u`‖W 1,∞(Ωk) <∞. (23)

Then u ∈ argminE(V ) and the conclusion (21) remains true as well.

Proof. In view of the bound (23), for fixed k ∈ N, we have

u`
∗
⇀ u weakly-∗ in W 1,∞(Ωk)

m.

Since φ is quasiconvex in its third component it follows from (22) that∫
Ωk

φ(x, u,Du)dx 6 lim inf
`→∞

∫
Ωk

φ(x̄`, ū`, Du`)dx

= lim inf
`→∞

∫
Ωk

φ(x̄`, ū`, ξ`)dx,

Using the lower bound (13), the compactness of the embedding W 1,1(Ω)m ⊂ Lq(Ω)m, and
setting Ω′k = Ω \ Ωk, we obtain∫

Ωk

φ(x, u,Du)dx 6 lim inf
`→∞

(
Φ`(u`, ξ`)−

∫
Ω′k

φ(x̄`, ū`, ξ`)dx
)

6 lim inf
`→∞

Φ`(u`, ξ`) + lim sup
`→∞

C(|Ω′k|+ ‖u`‖
q
Lq(Ω′k))

= lim inf
`→∞

Φ`(u`, ξ`) + C(|Ω′k|+ ‖u‖
q
Lq(Ω′k)).

Setting δk = C(|Ω′k|+ ‖u‖
q
Lq(Ω′k)) we can further estimate∫

Ωk

φ(x, u,Du)dx 6 lim inf
`→∞

Φ`(u`, ξ`) + δk

6 lim inf
`→∞

Φ`(u`, ξ`) + lim sup
`→∞

ε−1
` Ψ(Du`, ξ`) + δk

6 lim sup
`→∞

E`(u`, ξ`) + δk

6 inf E(V ) + δk for all k ∈ N. (24)
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Adding the term C(1 + |u|q) to the integral on the left-hand side the integrand becomes
non-negative and the bound becomes∫

Ωk

[
φ(x, u,Du) + C(1 + |u|q)

]
dx 6 inf E(V ) +

∫
Ω

C(1 + |u|q)dx.

Taking the supremum over k on the left-hand side (employing, for example, the Beppo-Levi
theorem), it follows that φ(x, u,Du) is integrable and that u ∈ argminE(V ). Furthermore,
we can let k →∞ and thus δk → 0 in (24) from which we can deduce the separate convergence
of the energy contributions (compare also with the proof of Lemma 4.3).

6. Connection with Γ-Convergence

Our main results, Theorems 4.1, 5.1 and 5.2, can be understood as Γ-convergence (also
known as epi-convergence) results. The purpose of the present section is to briefly explain this
connection. We refer to the monographs of Braides [9] and Dal Maso [13] for an introduction
to Γ-convergence.

We will demonstrate this point of view at the example of the polyconvex case. To this
end, suppose that (4), (5), (7) and (14) hold, and define, for v ∈ W 1,n(Ω)n, η ∈ L1(Ω) and
ε ∈ [0,∞),

F (v, η, ε) =


E(v) if v ∈ V, η = detDv, ε = 0,
Φ(v, η) + ε−1Ψ(detDv, η) if v ∈ V, ε ∈ (0,∞),
+∞ otherwise;

F`(v, η, ε) =

{
Φ(v, η) + ε−1Ψ(detDv, η) if v ∈ V`, η ∈ Y`, ε ∈ (0,∞),
+∞ otherwise.

A minor modification of Lemma 4.2 shows that, for each u ∈ V , ξ = detDu, there exists a
sequence u` → u strongly in W 1,n(Ω)n, ξ` → ξ strongly in L1(Ω), and ε` → 0 such that

lim sup
`→∞

F`(u`, ξ`, ε`) 6 F (u, ξ, 0). (25)

If ξ 6= detDu then F (u, ξ, 0) = +∞ and hence (25) is trivially satisfied.
On the other hand, in Lemma 4.3, we have proven that, whenever u` ⇀ u weakly in

W 1,n(Ω)n, ξ` ⇀ ξ weakly in L1(Ω), and ε` → 0, then

F (u, ξ, 0) 6 lim inf
`→∞

F`(u`, ξ`, ε`). (26)

Strictly speaking we have shown this for the case ξ = detDu, but we have also shown that
all accumulation points of families with bounded energy satisfy this. Hence, (26) is indeed
correct.

In the language of Γ-convergence (25) and (26) are, respectively, called the limsup and
liminf conditions (here only for ε = 0), and together they can be written as

Γ−lim
`→∞

F`(v, η, 0) = F (v, η, 0) for all v ∈ V, η ∈ L1(Ω), (27)

where Γ-convergence is understood with respect to the weak W 1,n(Ω)n × L1(Ω) × [0,∞)-
topology. In fact, it is straightforward to verify that

Γ−lim
`→∞

F` = F
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holds in the entire space W 1,n(Ω)n × L1(Ω) × [0,∞), however, this is less relevant for our
purposes.

Thus, Theorem 4.1 can be interpreted as a Γ-convergence result in the sense of (27). In
an obvious way, Theorems 5.1 and 5.2 can also be written in this way. We note however,
that our original statements are slightly stronger in that we obtain separate convergence of
the different contributions to the energy.

To conclude, we note that the statement

Γ−lim
`→∞

F`(·, ·, ε`) = F (·, ·, 0)

for a fixed sequence ε` → 0, is in general false. To see this, observe that to obtain (25), the
choice of the sequence (ε`) may strongly depend on the limit point u which we are aiming
to approximate.

7. Algorithms and Numerical Examples

In the preceding sections we have formulated a general class of numerical methods for the
solution of problems of the calculus of variations. The purpose of the present section is to
demonstrate how they can be efficiently implemented and to demonstrate their practicality
at several examples. We aim to give as much detail as possible so that our numerical results
may be easily reproduced.

7.1. Optimization of non-differentiable energies

We begin by describing the implementation of the non-differentiable functionals which arise
in our penalization procedure. Recall that we are aiming to minimize an energy which can
be written in the form

E(v) =

∫
Ω

W (x, v,Dv)dx

=

∫
Ω

φ
(
x, v,Dv, γ(Dv)

)
dx

over a convex and closed subset V ⊂ W 1,1(Ω)m, where φ(x, v, F, η) and γ(F ) are assumed
to be smooth (at least twice differentiable) in v, F , and η. For the sake of simplicity we do
not consider γ = γ(x, v,Dv), but this is not a true restriction.

We shall consider general penalty functionals of the type

Eε(v, η) =

∫
Ω

φ(x, v,Dv, η)dx+ ε−1

∫
Ω

∣∣γ(Dv)− η
∣∣
1
dx, (28)

defined for v ∈ V` = uD,`+P1(T`)m, η ∈ Y` = P0(T`)µ, and where |·|1 denotes the `1-norm. We
will see in numerical experiments that the L1-type penalty functional guarantees a compact
support of the difference γ(Dv)− η. This gives us information about the location of the sin-
gularities and also significantly reduces the complexity of the optimization (the optimization
software TRON [22] automatically removes the unnecessary degrees of freedom).

By a simple variable transformation, we can replace η by η + γ(F ) to obtain a new
functional ∫

Ω

φ
(
x, v,Dv, γ(Dv) + η

)
dx+

∫
Ω

|η|1dx.
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Next, we split the variable η into η = η+−η− where η+
j = max(ηj, 0) and η−j = −min(ηj, 0),

j = 1, . . . , µ, and hide γ(F ) within a newly defined energy density

φ̃(x, u, F, η) = φ
(
x, u, F, γ(F ) + η

)
,

to rewrite the functional as

Ẽε(v, η
+, η−) =

∫
Ω

φ̃(x, v,Dv, η+ − η−)dx+ ε−1

∫
Ω

|η+|1 + |η−|1dx. (29)

Upon making η+ and η− independent variables but imposing the bound constraints η+ > 0
and η− > 0 we have thus turned the original non-differentiable problem to minimize (28)
into a smooth but constrained optimization problem. In particular, we define (29) for all
v ∈ V` and for all η+, η− ∈ Y +

` , where

Y +
` = {η ∈ Y` : ηj > 0 in Ω, j = 1, . . . , µ}.

Functionals of type (29) can be easily implemented with its gradient and hessian provided
exactly. Our own implementation uses the trust region software TRON [22] to solve the local
minimization problem

min
u∈V`

ξ±∈Y +
`

Ẽε(u, ξ
+, ξ−). (30)

7.2. Adaptive mesh refinement for the penalty method

At several points in the continuation algorithm for the penalty method, described in the
following section, we have to refine the mesh based on one of two principles: (i) either to
reduce the overall energy or (ii) to reduce the contribution from the penalty term.

(i) To reduce the overall energy we use a DWR-type idea [8]. Let (u`, ξ
+
` , ξ

−
` ) be a local

minimum of Ẽε, computed using the method described above. We then define the error
indicators

ηe =
∑
T∈T`

ηT , where

ηT =

∣∣∣∣∣
∫
T

∂F φ̃(x, u`, Du`, ξ
+
` − ξ

−
` ) : (Du` −G`)dx

∣∣∣∣∣,
where G` ∈ P1(T`)m×n is a gradient recovery defined at each node z of the mesh T` by

G`(z) = −−
∫
∪{T∈T`:z∈T}

Du` dx.

The value ηe gives an indication how much the “elastic” energy may be lowered by local
mesh refinement. On the other hand, the value of the penalty integral

ηp = ε−1

∫
Ω

|ξ+
ε |1 + |ξ−ε |1dx

indicates how much the “penalty” energy can be lowered. If ηe > Ce,pηp then the mesh
is refined by marking a fraction of all elements which have the largest indicators ηT for
refinement. Otherwise all those elements are marked where ξ+ + ξ− is non-zero (up to a
threshhold which takes round-off errors and premature termination of the optimization into
account).

(ii) To reduce the penalty energy we use the very same procedure. All those elements
are marked for refinement where ξ+ + ξ− is non-zero.
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7.3. Continuation algorithm

A major difficulty one encounters when solving problems involving the Lavrentiev phe-
nomenon is the so-called repulsion property. For example, if uj → x1/3 strongly in L1(0, 1),
but uj ∈ W 1,∞(0, 1) for all j, then∫ 1

0

|uj,x|6(u3
j − x)2dx→ +∞.

We can imagine this effect as a huge energy barrier that needs to be overcome (or a compli-
cated path to be found) when moving from a Lipschitz function to the global minimum. In
our computations, we see this effect in that even for sufficiently small meshes it is often dif-
ficult to find the correct minimizers and that the penalty method converges to the Galerkin
solution instead. (By “Galerkin solution”, we mean any P1-minimizer of the original non-
penalized functional.) In particular, we observed that a local minimum when ε is chosen
too small in relation to the current mesh since in that case the penalty method becomes in
effect a Galerkin method again.

Thus the problem may be overcome by, either increasing ε, or decreasing the mesh
size. The former is clearly not desirable while the latter may be prohibitively expensive.
Our solution therefore was to consider a continuation with respect to the parameter ε. By
initially choosing ε very large the Galerkin solution is automatically discarded even for coarse
meshes. We then gradually decrease ε and adapt the mesh whenever there is a danger that
we may “fall out” of the basin of attraction of the exact minimizer because ε has become
too small for the current mesh. This may be controlled by requiring that at all times the
total energy Ẽε must be below a critical value which should be less than the energy of the
Galerkin solution.

(1) Choose εdec ∈ (0, 1), Egoal ∈ R, ε0, an initial mesh T0, and two bounds N1
opt, N

2
opt (see

remarks below how to coose them) for number of iterations of the optimization. Set
` = 0 and Nopt = N2

opt.

(2) Minimize Ẽε`
, allowing at most Nopt iterations.

(3) Determine next action:

(3.1) If the optimization converged and Ẽε`
6 Egoal accept the step, set ` ← ` + 1,

ε` = ε`−1 · εdec, T` = T`−1, Nopt = N1
opt and continue at (2).

(3.2) If the optimization converged but Ẽε`
> Egoal use refinement strategy (i) of the

previous section to obtain a new mesh T`, set Nopt = N2
opt, and redo step (2).

(3.3) If the optimization did not converge use refinement strategy (ii) of the previous
section to obtain a new mesh T`, set ε` = ε`−1, Nopt = N2

opt, and redo step (2).

Some further comments to refine the continuation algorithm are required.

• The initial parameters for step (1) have to be chosen in such a way that the first step
is always succesful.

• The algorithm terminates unsuccesfully when a maximum number of elements is reached,
and succesfully when a prescribed goal εgoal for ε` is achieved.
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• If the algorithm has terminated succesfully we usually “postprocess” the solution by
performing a few additional mesh refinements (but fixing ε) using strategy (i) to confirm
that the penalty energy and support of ξ+

` + ξ−` tend to zero.

• After ε` is decreased in step (3.1) we only expect a small change in the solution. There-
fore the optimization should essentially behave like Newton’s method and terminate
in few steps. We therefore set the maximum number of iterations to a relatively small
number (say N1

opt = 20). This setting prevents us from spending many iterations on
finding an entirely new equilibrium when ε` becomes too small for the current mesh
and the penalty solution ceases to be a local minimizer.

• On the other hand, after the mesh is refined in either step (3.2) or (3.3) we expect
a large change in the solution because the support of ξ+ + ξ− may shrink and we
therefore allow a larger number of iterations (say N2

opt = 106, but we usually observe
termination in far fewer iterations).

We have not addressed the question under which the algorithm is considered to have
failed. When no Lavrentiev phenomenon occurs, we observe, in general, that for large ε
a state satisfying the requirement Ẽε`

6 Egoal is found but that eventually, the algorithm
will keep refining the mesh without being able to uphold this bound. We have therefore
implemented a safety check which terminates the algorithm when a prescribed number of
elements is reached.

As a warning, we also note that for sufficiently large ε it is sometimes possible to find
reasonably looking solutions which indicate a Lavrentiev gap, but which may disappear as ε
becomes small. It is therefore crucial to be able to drive ε as close to zero as possible.

7.4. Maniá-type examples

In this section we present numerical results for one-dimensional problems of the type

E(v) =

∫ 1

0

(
|vx|n(vm − xk)2 + ν|vx|2

)
dx (31)

V =
{
v ∈ W 1,1(0, 1) : v(0) = 0, v(1) = 1

}
= id +W 1,1

0 (0, 1),

where k,m, n ∈ N and ν > 0. This class includes in particular Maniá’s original example [23]
(n = 6,m = 3, k = 1, ν = 0), and the regular example of Ball and Mizel [6, 7] (n = 14,m =
3, k = 2, 0 < ν < 2.4×10−3). The idea behind these examples is that, for ν = 0 the infimum
of the energy is always zero with exact solution u∗(x) = xk/m, but that the power n can be
chosen large to make approximation difficult. Moreover, if m and k are chosen such that
u∗ ∈ H1(0, 1) then a perturbation of the functional with sufficiently small positive ν does
not change whether E exhibits a Lavrentiev phenomenon or not [6, 7].

The x1/3 singularity for the original Maniá example is expensive (though not impossible)
to resolve and so we have chosen to compute the solution for n = 8,m = 2, k = 1, ν = 0
instead. We have plotted an accurate Galerkin solution, the solution of the penalty method
for ε = 10−1 and ]T = X in Figure 1, and the iterations of the contributions to the energy
of the penalty method as well as the support of ξ+

` + ξ−` in Figure 2.
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Figure 1. Final solutions of the Galerkin and the Penalty methods for the Maniá problem (31) with
parameters n = 8,m = 2, k = 1, ν = 0 before the reduction step. The error of the penalty solution in the
L∞-norm is ‖u` − u∗‖L∞ ≈ 7.83× 10−5.
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Figure 2. Evolution of the contributions to the penalty energy Ẽε`
and of the support of the penalty variables

at each step of the continuation algorithm outlined in Section 7.3. The clear convergence of |supp(ξ+ + ξ−)|
to zero is a strong indicator for the convergence of the method.



Penalty Methods for Computing Singular Minimizers 23

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Solution of Galerkin and Penalty Method

x

 

 

Galerkin

Penalty

0 5 10

x 10−3

0

0.01

0.02

0.03

0.04

0.05

x
0 2 4

x 10−7

100

10−3

103

x

 

 
ξ+ + ξ−

Figure 3. Final solution of the Galerkin and Penalty methods for Ball and Foss’ [7] version of the Maniá
problem (31) with parameters n = 17,m = 3, k = 2, ν = 10−3 before the reduction step. The different orders
of the singularity at the origin are a clear indication for a Lavrentiev gap.

In addition, we also computed the solution for the regular example of Ball and Mizel with
n = 14,m = 3, k = 2, ν = 10−3, and we have plotted the solution in Figure 3. The evolution
of the energy and of the support of the penalty variable is similar as in the previous example.

7.5. A convex example in 2D

In this section, we present numerical results for a modification of the example provided by
Foss, Hrusa and Mizel [16]. In their original example a semi-circle Ω is transformed into a
quarter-circle y(Ω) with stored energy

E(y) =

∫
Ω

[(
|Dy|2 − 2 detDy

)4
+ ν
( κ

detDy
+ 32−κ2(1 + |Dy|2)κ/2

)]
dx,

where κ and ν are parameters, creating a singularity at the origin. The idea of the exam-
ple is similar as in the regular examples of Ball and Mizel. For ν = 0 the map y∗(x) =
r1/2(cos(θ/2), sin(θ/2)) gives zero energy but the large power makes approximation difficult
and it can be shown that the problem exhibits the Lavrentiev phenomenon. Further, the
deformation y∗ has finite energy for ν > 0 and hence, for ν sufficiently small the Lavrentiev
effect remains [16].

We note that the map F 7→ (|F |2 − 2 detF ) is a non-negative quadratic form and hence
the stored energy density

W0(F ) =
(
|F |2 − 2 detF

)4

is convex. The polyconvex terms are fairly unimportant for the Lavrentiev effect and hence
we decided to ignore them completely (though we should mention that we also performed
succesful computations with the full Foss/Hrusa/Mizel example). Instead, upon noting that
y∗ ∈ H1(Ω) we regularize W0 by a quadratic and define

E(v) =

∫
Ω

[
W0(Dy) + ν|Dy|2

]
dx (32)

V =
{
v ∈ W 1,1(Ω) : v(x) = r(cos(θ/2), sin(θ/2)) if |x| = 1,

v1({x2 = 0, x1 < 0}) = {0} and v2({x2 = 0, x1 > 0} = {0}
}
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The solution and the evolution of the energy during optimization for the case ν = 0
are plotted in Figures 4, 5 and 6. For the case ν = 10−3, we have only plotted the radial
component of the solution in Figure 7. The evolutions of energy and support of the penalty
variables during the optimization is similar as in Figure 6.
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Figure 4. Radial components of the solution of the Galerkin and the Penalty methods for the modified
Foss/Hrusa/Mizel problem (32) with ν = 0 before the reduction step. The different orders in the singularities
at the origin are a clear indicator for a Lavrentiev gap. The error of the penalty solution before reduction is
‖u` − u∗‖L∞ ≈ 1.07× 10−1.

To conclude, we briefly outline the result of an experiment that does not exhibit a Lavren-
tiev gap. We modify (32) as follows:

E(v) =

∫
Ω

[
W0(Dy) + ν|Dy|p

]
dx,

keeping the same admissible set V . We choose ν = 1/60 and p = 6 a case for which numerical
experiments in [25, 26] indicate the absence of a Lavrentiev gap.

An adaptive Galerkin solution suggests that the infimum of the energy in the space of
Lipschitz functions is approximately inf E(V ∩W 1,∞(Ω; R2)) ≈ 0.0093 +O(3× 104). Hence,
we try to minimize the penalty functional with target energy Egoal = 0.0085. We observe
that up to ε ≈ 2 the algorithm behaves similar as in the case p = 2 above. However, at this
point it stagnates and is unable to lower the penalty parameter further without increasing
the energy above Egoal. This is strong indication that no Lavrentiev gap exists or, more
precisely, that no gap larger than 10−3 exists, which is consistent with [25, 26].

Next, we considered the case ν = 1/40 and p = 4. This is a borderline case that is
particularly difficult to resolve. In this case the adaptive Galerkin solution suggests that
inf E(V ∩W 1,∞(Ω; R2)) ≈ 0.0212 +O(3× 104). We tried to minimize the penalty functional
with Egoal = 0.02. Our algorithm once again managed to decrease the penalty parameter
to approximately ε ≈ 1.8 but not further, thus indicating the absence of a Lavrentiev gap.
However, this is in contradiction with the numerical experiments shown in [26]. Due to the
relative simplicity of the method used in [26] it is conceivable that their results are correct,
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Figure 5. Plot of the deformation given by the solution of the Penalty method for the Foss/Hrusa/Mizel
problem (32) with ν = 0. The shade of the elements represents the size of the penalty variables ξ+ + ξ−.
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Figure 6. Evolution of the contributions to the penalty energy Ẽε`
and of the support of the penalty

variables at each step of the continuation algorithm outlined in Section 7.3. The apparent convergence of
|supp(ξ+ + ξ−)| to zero is a strong indicator for the convergence of the method.
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Figure 7. Radial components of the solution of the Galerkin and the Penalty methods for the modified
Foss/Hrusa/Mizel problem (32) with ν = 0 before the reduction step. The different orders in the singularities
at the origin are a clear indivator for a Lavrentiev gap. For comparison, the exact solution for the case ν = 0
is plotted as well.

and thus shows that in particularly difficult borderline cases our method may still require
some improvements.
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