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Abstract. We formulate and analyze an adaptive non-conforming finite-element
method for the solution of convex variational problems. The class of minimization
problems we admit, includes highly singular problems for which no Euler–Lagrange
equation (or inequality) is available. As a consequence, our arguments only use the
structure of the energy functional. We are nevertheless able to prove convergence of
an adaptive algorithm, using even refinement indicators that are not reliable error
indicators.

1. Introduction

We present a new convergence proof for adaptive non-conforming finite element meth-
ods which is applicable to a wide class of convex variational problems.

For fixed n ≥ 2 and m ≥ 1, let Ω be a bounded polygonal domain in R
n and let

W : R
m×n → [0,+∞] be a convex stored energy density which satisfies a p-growth

condition from below, i.e.,

W (ξ) ≥ C(|ξ|p − 1) for all ξ ∈ R
m×n and some p > 1. (1)

For a fixed dead load f ∈ Lp′(Ω), where 1/p′+1/p = 1, we define the energy functional
J : W1,p(Ω)m → R ∪ {+∞} by

J (v) =

∫

Ω

(
W (∇v) − f · v

)
dx. (2)

Given some g ∈ W1,p(Ω)m with J (g) < +∞ and sets Γ(i) ⊂ ∂Ω, i = 1, . . . , m, with
positive surface measure |Γ(i)| > 0, we define the admissible set

A =
{
v ∈ W1,p(Ω)m : v(i) = g(i) on Γ(i), i = 1, . . . , m

}
6= ∅; (3)

here and throughout we use superscripts to denote components of a vector-valued
function. We note that admissible functions satisfy the Poincaré-type inequality

‖v − g‖Lp(Ω) ≤ Cp‖∇v −∇g‖Lp(Ω) for all v ∈ A, (4)

where Cp is some fixed constant.
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In this paper, we analyze the numerical solution of the minimization problem

u ∈ argminJ (A). (5)

by means of an adaptive non-conforming finite element method.
Under the conditions we imposed, the functional J may be non-differentiable at

a solution, even if W itself is smooth [3], and hence the associated Euler–Lagrange
equation is unavailable to us. In this situtation, the method of choice for the analysis
of (5) (and its discretization) is the direct method of the calculus of variations [15],
whose application immediately gives the following basic existence result. Since it is
helpful to understand our subsequent analysis, we give a brief outline of the proof. We
refer to Dacorogna’s monograph [15] (in particular Theorem 4.1) for further details.

Proposition 1. There exists at least one solution of (5).

Proof. For an admissible function v ∈ A, the Poincaré inequality (4) implies

‖v‖Lp(Ω) . ‖∇(v − g)‖Lp(Ω) + ‖g‖Lp(Ω) . ‖∇v‖Lp(Ω) + ‖g‖W1,p(Ω),

where a . b abbreviates a ≤ C b with a generic constant C > 0. From the p-growth
condition (1) and Young’s inequality, we infer

J (v) & ‖∇v‖p
Lp(Ω) − ‖f‖Lp′(Ω)‖v‖Lp(Ω) − |Ω| & ‖∇v‖p

Lp(Ω) − C(f, g,Ω)

with an additive constant C(f, g,Ω) ≥ 0. Applying the Poincaré-type inequality (4)
again, we find that J is coercive, i.e.,

‖v‖p
W1,p(Ω) . J (v) + 1 for all v ∈ A. (6)

Suppose now that (uℓ)ℓ∈N ⊂ A is a minimizing sequence for J , i.e., J (uℓ) → inf J (A)
as ℓ→ ∞. By (6) and reflexivity of W1,p(Ω)m, we may assume that (uℓ)ℓ∈N converges
weakly to some limit u in W1,p(Ω)m. Since A is convex and closed, it is weakly closed,
and hence it follows that u ∈ A. Finally, convexity and non-negativity of W imply
the weak lower semicontinuity of J , i.e.,

J (u) ≤ lim inf
ℓ→∞

J (uℓ),

cf. [15, Theorem 3.4]. Thus, we conclude that J (u) = inf J (A), i.e., that u ∈
argminJ (A). �

The class of problems which is included in our analysis is surprisingly general. It
includes not only standard variational model problems such as the Dirichlet prob-
lem [10, 13, 18, 21], or the p-Laplacian [17, 24], or convex problems with control of
stresses [4, 9] (all of these works require uniform p-growth from below and above),
but is in fact suited for any convex functional of the type (2). Even our p-growth
condition from below can be relaxed to some extent [23]. For simplicity we have
restricted our presentation to Dirichlet constraints, but this constraint is easily lifted
as well (cf. Section 5).

One of the most important features of our analysis is that we do not require J to
be continuous in the strong topology of W1,p(Ω)m and hence, using ideas from [23],
we are even able to overcome the Lavrentiev gap phenomenon. If g ∈ W1,∞(Ω)m, then
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A∞ := A∩W1,∞(Ω)m is non-empty, and we say that (5) exhibits the Lavrentiev gap
phenomenon if

inf J (A∞) > minJ (A). (7)

Foss, Hrusa and Mizel [19] have shown that this effect can indeed occur under the
conditions we have posed. Note that, since typical conforming finite element functions
are Lipschitz continuous, non-conformity of the numerical method is essential for
treating problems in that class. Furthermore, since the Lavrentiev effect is closely
linked to singularities in the solution of nonlinear variational problems, adaptive
solution techniques are particularly important. We refer to [3, 12, 23] for overviews
of this fascinating subdiscipline of the calculus of variations.

To the best of our knowledge, three classes of convergence proofs for adaptive
finite element methods for linear problems exist to date. The first idea [18, 21] used
the so-called inner node property from which a lower bound on the discrete error
in terms of the estimator can be derived. This implies, up to oscillation terms, the
reduction of the error at each step of the adaptive algorithm. A further step was taken
in [22] by circumventing the inner node property at a given step but still requiring
that it should be obtained after a fixed number of refinements. The first proof
which completely circumvented the use of lower bounds but only requires reliability
of the error estimator, is given in [13]. Extensions of this convergence analysis to
the non-linear Laplacian, or more general convex variational problems can be found
in [4, 9, 17, 24]. These works require the use of some additional structure of the
problems but are still heavily based on the analysis for the Dirichlet problem.

Proofs of the convergence of adaptive non-conforming and mixed finite element
methods can be found, for example, in [10, 11]. The analysis contained therein is
largely adapted from the conforming case, the crucial modification being a control of
non-conformity which leads to so-called quasi-Galerkin orthogonality relations.

In particular, all previous proofs require the use of Euler–Lagrange equations, and
of reliable a posteriori error estimates, both of which are not available for our problem
class. We therefore have to use a completely different approach. Our convergence
argument is based on the direct method of the calculus of variations, and is strictly
tailored to non-conforming finite element methods. It does not apply in an obvious
way to the conforming case. In addition to the lack of Euler–Lagrange equations in
our problem, it is also interesting to note that we obtain convergence of our adaptive
algorithm even though the refinement indicators we use do not provide reliable error
bounds.

The first part of our convergence proof (Section 3.1) is motivated by [23] and, to
the best of our knowledge, uses techniques which have not previously been employed
in the context of adaptive finite element methods. The second part (Theorem 8) is
closely related to, and in fact inspired by, the proof given in [22].

The paper is organized as follows. In Section 2, we fix the notation and state some
auxiliary results. In Section 3.1, we provide sufficient conditions for the convergence
of the Crouzeix–Raviart finite element method. This analysis motivates the definition
of convergence indicators which we discuss in some detail in Section 3.2. Finally,
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in Section 3.3 we formulate an adaptive algorithm and prove its convergence. To
conclude, we present several numerical experiments in Section 4.

2. Preliminaries

2.1. Function Spaces. Let A be an open subset of R
n. We use Lp(A) and W1,p(A)

to denote the standard Lebesgue and Sobolev spaces and equip them with their
usual norms. The space of distributions is denoted by D′(A) [2]. The distributional
gradient operator is denoted D, while the weak gradient operator is denoted ∇. The
space of k-times continuously differentiable functions with compact support in A is
denoted Ck

0(A).

2.2. Triangulation of Ω. For every ℓ ∈ N, we assume that Tℓ is a regular trian-
gulation of Ω̄ into closed simplices T ∈ Tℓ. In particular, Tℓ has no hanging nodes
in 2D, no hanging nodes or edges in 3D, and so forth. Let Eℓ denote the collection
of n − 1 dimensional faces of elements and E int

ℓ the collection of interior faces. Let
Nℓ denote the set of vertices and N nc

ℓ denote the set of barycenters of the faces. We
assume throughout that, up to surface measure zero, the sets Γ(i) are the union of
faces Ed,i

ℓ ⊂ Eℓ, i = 1, . . . , m, and we set E int,i
ℓ = Eℓ \ E

d,i
ℓ .

For each element T ∈ Tℓ, we set hT = diam(T ). For each face E ∈ E , we set
hE = diam(E). The mesh-size function hℓ : Ω → R>0 is then almost everywhere
defined by hℓ(x) = hT for x in the interior of an element T ∈ Tℓ and hℓ(x) = hE for
x in the relative interior of a face E ∈ Eℓ.

The shape regularity constant σ(Tℓ) is the smallest number C > 0 such that

C−1 hn
T ≤ |T | ≤ hn

T , C−1 hn−1
E ≤ |E| ≤ hn−1

E and hE ≤ hT ≤ C hE

for all elements T ∈ Tℓ and faces E ∈ Eℓ with E ⊂ ∂T . A family (Tℓ)ℓ∈N of regular
triangulations is uniformly shape-regular, if sup

ℓ∈N

σ(Tℓ) <∞.

2.3. Finite Element Spaces. We briefly describe the Crouzeix–Raviart finite
element space used to discretize (5); see [5, 7, 14] for further details.

The space of all Tℓ-piecewise affine functions is denoted by

P1(Tℓ) =
{
v ∈ L1(Ω) : v|T is affine for all T ∈ Tℓ

}
.

CR(Tℓ) denotes the Crouzeix–Raviart finite element space,

CR(Tℓ) =
{
vℓ ∈ P1(T ) : vℓ is continuous at all face barycentres z ∈ N nc

ℓ

}
.

For each barycenter z ∈ N nc
ℓ , let Ez ∈ Eℓ be the unique face which contains z. The

interpolation operator Πℓ : W1,1(Ω)m → CR(Tℓ)
m is defined via [14]

Πℓv(z) = |Ez|
−1

∫

Ez

v ds for all z ∈ N nc
ℓ

and thus satisfies
∫

E
Πℓv ds =

∫
E
v ds for all faces E ∈ Eℓ. We summarize its most

important properties for our purpose in the following lemma. It is worth noting that
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neither the stability of Πℓ, nor the interpolation error estimate depend on the shape
regularity σ(Tℓ).

Lemma 2 (Properties of Crouzeix–Raviart Interpolant). Let v ∈ W1,p(Ω)m

and T ∈ Tℓ, then Πℓ has the first-order approximation property

‖v − Πℓv‖Lp(T ) ≤ CapxhT ‖∇v‖Lp(T ) (8)

with Capx = 1 + 2/n ≤ 2. Furthermore, it satisfies the mean value property

|T |−1

∫

T

∇v dx = |T |−1

∫

T

∇(Πℓv) dx = ∇(Πℓv)|T , (9)

which implies the stability estimate

‖∇(Πℓv)‖Lp(T ) ≤ ‖∇v‖Lp(T ). (10)

Proof. Since the outer unit normal ν to T is constant on each of its faces, integration
by parts in T yields

∫

T

∂

∂xj

v dx =

∫

∂T

vνj ds =

∫

∂T

(Πℓv)νj ds =

∫

T

∂

∂xj

(Πℓv) dx,

which proves (9). In particular, we have

‖∇(Πℓv)‖Lp(T ) = |T |1/p−1
∣∣∣
∫

T

∇v dx
∣∣∣ ≤ ‖∇v‖Lp(T ),

which establishes (10).
Next, we recall the well-known trace identity

1

|E|

∫

E

w ds =
1

|T |

∫

T

w dx+
1

n|T |

∫

T

(x− z) · ∇w dx for all w ∈ W1,1(T ),

where z ∈ T ∩N is the vertex opposite to E, i.e. T = conv(E ∪ {z}). By definition,
w := v−Πℓv satisfies

∫
E
w ds = 0. Therefore, the integral mean wT := |T |−1

∫
T
w dx

can be estimated by

|wT | =
1

|T |

∣∣∣
∫

T

w dx
∣∣∣ ≤

hT

n|T |
‖∇w‖L1(T ) ≤

hT |T |1/p′−1

n
‖∇w‖Lp(T ),

whence ‖wT‖Lp(T ) ≤ (hT/n) ‖∇w‖Lp(T ). Next, we use the Poincaré inequality ‖w −
wT‖Lp(T ) ≤ (hT /2) ‖∇w‖Lp(T ) on the convex domain T [1]. This gives

‖w‖Lp(T ) ≤ ‖w − wT‖Lp(T ) + ‖wT‖Lp(T ) ≤
(1

2
+

1

n

)
hT ‖∇w‖Lp(T ).

Hence, we can deduce (8) from (10) and a triangle inequality. �

Since vℓ ∈ CR(Tℓ)
m may be discontinuous across faces E ∈ Eℓ, vℓ is not weakly

differentiable; nevertheless we use ∇vℓ to denote its Tℓ-elementwise gradient. We also
require a notation for the jumps across interior faces. For E = T+ ∩ T− ∈ E int

ℓ , we
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fix the labelling of the elements T± and we let v±ℓ denote the traces from T±, and
ν = νE the outer unit normals to T+. We define the jump across E by

[vℓ]
(i) = v+

ℓ − v−ℓ .

For a boundary face E ⊂ ∂Ω, E = ∂Ω ∩ T , we let ν = νE be the outer unit normal
to Ω, and we define

[vℓ]i =

{
v

(i)
ℓ − g(i), if E ⊂ Γ(i)

0, otherwise.

With this notation, the distributional gradient reads

〈Dvℓ, ϕ〉 = −

∫

Ω

vℓ · divϕ dx =

∫

Ω

∇vℓ : ϕ dx−

∫

∪E int
ℓ

([vℓ] ⊗ ν) : ϕ ds, (11)

for vℓ ∈ P1(Tℓ)
m and ϕ ∈ C1

0(Ω)m×n. The representation formula (11) can be verified
by integration by parts on each element. The symbol ⊗ denotes the tensor product
a⊗ b ∈ R

m×n, i.e., (a⊗ b)ij = aibj .

3. Adaptive Solution

Let (Tℓ)ℓ∈N be a uniformly shape-regular family of triangulations of Ω, which will
subsequently be generated by an adaptive algorithm. We extend the definition of
the energy functional J to the Crouzeix–Raviart finite element space CR(Tℓ)

m by
setting

J (vℓ) =

∫

Ω

[
W (∇vℓ) − f · vℓ

]
dx.

We stress, however, that ∇vℓ now denotes the Tℓ-piecewise gradient.
Since CR(Tℓ) is not a subspace of W1,p(Ω) we need to take care in defining the

set of discrete admissible functions. A natural definition is to impose the Dirichlet
condition on the face barycenters,

Aℓ =
{
vℓ ∈ CR(Tℓ)

m : v
(i)
ℓ (z) = Πℓg

(i)(z) for z ∈ Γ(i) ∩N nc
ℓ , i = 1, . . . , m

}
. (12)

We note that Πℓv ∈ Aℓ, for each v ∈ A, and hence, Aℓ is sufficiently rich to be a
‘good’ approximation of A.

The Crouzeix–Raviart finite element discretization of (5) is to find a minimizer

uℓ ∈ argminJ (Aℓ). (13)

As in the continuous case, we have the following result.

Proposition 3. There exists at least one solution to (13).

Proof. We simply adapt the proof of Proposition 1. As before, Aℓ is convex and
closed, and J is (weakly) lower semicontinuous on the finite dimensional space
CR(Tℓ)

m. It only remains to prove the coercivity of J in A: a broken Poincaré
inequality [8, Corollary 4.3] (for the case p = 2 see also [6]) provides

‖vℓ‖Lp(Ω) ≤ ‖vℓ − Πℓg‖Lp(Ω) + ‖Πℓg‖Lp(Ω) . ‖∇(vℓ − Πℓg)‖Lp(Ω) + ‖Πℓg‖Lp(Ω),
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so that stability of Πℓ yields

‖vℓ‖Lp(Ω) . ‖∇vℓ‖Lp(Ω) + ‖g‖W1,p(Ω).

With the same arguments as in the proof of Proposition 1, we obtain the discrete
analogue of (6),

‖vℓ‖
p
Lp(Ω) + ‖∇vℓ‖

p
Lp(Ω) . J (vℓ) + 1 for all vℓ ∈ Aℓ. (14)

Arguing as above, we conclude the proof. �

3.1. Sufficient Conditions for Convergence. In this section, we derive con-
ditions under which a sequence (uℓ)ℓ∈N of discrete solutions converges to a solution
of (5). Lemma 4 is the main observation which led to the convergence theorem
for uniformly refined meshes [23, Equation (31)] and will again play a prominent
role here. Lemma 5 is a refinement of [23, Lemma 8] which allows us to adapt the
convergence argument to adaptively refined meshes.

Lemma 4 (Upper Bound). For every v ∈ W1,p(Ω)m, it holds that

J (Πℓv) ≤ J (v) + Capx ‖hℓf‖Lp′ (Ω) ‖∇v‖Lp(Ω). (15)

Proof. Jensen’s inequality yields W
(
|T |−1

∫
T
∇v dx

)
≤ |T |−1

∫
T
W (∇v) dx. From the

mean value property (9), we infer
∫

T

W (∇Πℓv) dx ≤

∫

T

W (∇v) dx,

and hence,

J (Πℓv) ≤ J (v) +

∫

Ω

f · (v − Πℓv) dx.

Elementwise application of the approximation error estimate (8) results in (15). �

Remark 1. The upper bound (15) should be expected to be suboptimal. For
example, for the standard Dirichlet problem (where W (F ) = |F |2), the energy error
is formally of order O(h2) while the estimate in (15) is only of order O(h). One
reason for this is that (15) provides an upper bound for any v and not only for the
energy minimum. However, since we cannot assume any differentiabiliy properties
on J (this is due to the lack of a growth condition on W from above), there is little
hope to recover an O(h2) estimate. �

Lemma 5 (Compactness of Sublevel Sets). Let vℓ ∈ Aℓ, ℓ ∈ N, be a sequence
satisfying sup

ℓ∈N

J (vℓ) <∞, and assume that

∥∥hℓ[vℓ]‖L1(∪Eℓ)
ℓ→∞
−−−→ 0. (16)
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(We stress that the skeleton
⋃

Eℓ includes ∂Ω.) Then, there exists a subsequence
(vℓk

)k∈N and a limit v ∈ A such that

vℓk
⇀ v weakly in Lp(Ω)m,

∇vℓk
⇀ ∇v weakly in Lp(Ω)m×n.

(17)

Proof. As in the proof of Proposition 3 (cf. (14)) boundedness of the energy gives

sup
ℓ∈N

(
‖vℓ‖Lp(Ω) + ‖∇vℓ‖Lp(Ω)

)
<∞.

Since Lp(Ω) is reflexive, we may assume without loss of generality that vℓ as well
as ∇vℓ are weakly convergent with limits v ∈ Lp(Ω)m and F ∈ Lp(Ω)m×n. We
now aim to show that v is weakly differentiable with ∇v = F . To this end, we fix
ϕ ∈ C∞

0 (Ω)m×n, and recall the representation formula (11) to obtain

〈Dvℓ, ϕ〉 =

∫

Ω

∇vℓ : ϕ dx−

∫

∪Eℓ

([vℓ] ⊗ ν) : ϕ ds.

For the first term, weak convergence of ∇vℓ to F implies
∫

Ω

∇vℓ : ϕ dx
ℓ→∞
−−−→

∫

Ω

F : ϕ dx.

For each face E ∈ Eℓ, let ϕE := |E|−1
∫

E
ϕ ds denote the integral mean of ϕ over

E. Using the fact that
∫

E
[vℓ] ds = 0 for all interior faces E ∈ E int

ℓ , we estimate the
second term by

∣∣∣
∫

∪Eℓ

([vℓ] ⊗ ν) : ϕ ds
∣∣∣ =

∣∣∣
∑

E∈Eℓ

∫

E

([vℓ] ⊗ ν) :
(
ϕ− ϕE

)
ds

∣∣∣

≤
∑

E∈Eℓ

hE

∫

E

∣∣[vℓ]
∣∣ ds ‖∇ϕ‖L∞(Ω)

=

∫

∪Eℓ

hℓ

∣∣[vℓ]
∣∣ds ‖∇ϕ‖L∞(Ω).

By hypothesis (16) and the definition of the distributional gradient, we obtain
∫

Ω

F : ϕ dx = lim
ℓ→∞

〈Dvℓ, ϕ〉 = − lim
ℓ→∞

∫

Ω

vℓ · divϕ dx = −

∫

Ω

v · divϕ dx = 〈Dv, ϕ〉,

which proves v ∈ W1,p(Ω)m with ∇v = Dv = F .
It remains to show that v|Γ(i) = g|Γ(i). Here it is crucial that (16) includes the

condition that ‖hℓ(vℓ−g)(i)‖L1(Γ(i)) → 0. The result then follows upon combining the
arguments from [23, Lemma 8] with the generalization presented above. �

Theorem 6 (Convergence of Discrete Minimizers). Suppose that a sequence
uℓ ∈ argminJ (Aℓ) of discrete minimizers satisfies

‖hℓf‖Lp′(Ω) + ‖hℓ[uℓ]‖L1(∪Eℓ)
ℓ→∞
−−−→ 0. (18)
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Then there exists a subsequence (uℓk
)k∈N, and u ∈ argminJ (A) such that

uℓk
⇀ u weakly in Lp(Ω)m,

∇uℓk
⇀ ∇u weakly in Lp(Ω)m×n, and

J (uℓ) → J (u) = inf J (A).

Moreover, unique solvability (i.e., #argminJ (A) = 1) implies weak convergence
uℓ ⇀ u of the entire sequence. Finally, if W is strictly convex, it even holds that

∇uℓ → ∇u strongly in Lp(Ω)m×n.

Proof. Fix an arbitrary v ∈ A with finite energy. From Lemma 4, we infer

J (uℓ) ≤ J (Πℓv) ≤ J (v) + Capx‖hℓf‖Lp′(Ω)‖∇v‖Lp(Ω).

Thus, the sequence (uℓ)ℓ∈N has uniformly bounded energy, and hence, Lemma 5
provides a weakly convergent subsequence (uℓk

)k∈N with limit u ∈ A. Since W is
convex, J is lower semicontinuous along the sequence uℓk

[15, Theorem 3.4]. This
gives

J (u) ≤ lim inf
k→∞

J (uℓk
) ≤ lim sup

k→∞
J (uℓk

) ≤ lim sup
ℓ→∞

J (uℓ) ≤ J (v). (19)

Since v ∈ A was arbitrary, we deduce u ∈ argminJ (A). Moreover, the choice v = u
yields equality in the latter estimate, and hence J (u) = limk J (uℓk

) = inf J (A).
The convergence J (u) = limℓ J (uℓ) follows from the fact that J (u) = inf J (A),

i.e., that the limit is independent of the subsequence. Namely, if (ũℓ)ℓ∈N is an ar-
bitrary subsequence of (uℓ)ℓ∈N for which (J (ũℓ))ℓ∈N is convergent, then the preced-
ing arguments shows that limℓ J (ũℓ) = inf J (A). In particular, lim infℓ J (uℓ) =
lim supℓ J (uℓ) = inf J (A).

If the minimizer u ∈ argminJ (A) is unique, we can use the same kind of unique-
ness argument to show that the entire sequence (uℓ)ℓ∈N converges weakly to u: More
precisely, the preceding argument shows that any subsequence (ũℓ)ℓ∈N of (uℓ)ℓ∈N has a
weakly convergent subsequence (ũℓk

)k∈N, whose limit is the unique minimizer u ∈ A.
Consequently, the whole sequence (uℓ)ℓ∈N converges weakly to u.

Finally, ifW is strictly convex, a result of Visintin [25] shows that weak convergence
together with convergence of the energy implies strong convergence. �

3.2. Refinement Indicators. The analysis of the previous section has demon-
strated that condition (18) is sufficient in order to obtain convergence of the CR-
FEM. It is therefore natural to use the quantities featured therein to steer the mesh
refinement. Since the origin of the two quantities, ‖hℓf‖Lp′ and ‖hℓ[uℓ]‖L1 is some-
what unusual (in particular, they do not arise from an a posteriori error estimate),
we make a remark on their origin and interpretation.

Remark 2. The two quantities ‖hℓf‖Lp′ and ‖hℓ[uℓ]‖L1 in (18) are closely linked
to two conditions known in the calculus of variations as the limsup condition and
the liminf condition of Γ-convergence [16] (or, simply, the upper bound and the lower
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bound) and which guarantee convergence of minimizers of a sequence of minimization
problems to a minimizer of the correct limit problem.

The main step in the Γ-convergence argument is (19) in the proof of Theorem 6.
Note that guaranteeing ‖hℓf‖Lp′ → 0 provides the last inequality in (19) (the limsup
condition), while guaranteeing ‖hℓ[uℓ]‖L1 → 0 establishes weak convergence of the
broken gradients which, together with convexity of W , provides the first inequality
in (19) (the liminf condition).

Thus, our convergence indicators are not linked to any a posteriori error estimate
in the usual sense, but arise from the use of the direct method of the calculus of
variations (or Γ-convergence) in the weak convergence argument of Theorem 6. �

In what follows, we discuss straightforward modifications of the convergence indi-
cators which are more suitable for steering an adaptive algorithm, but for which our
theory still applies. In order to associate the quantity ‖hℓf‖Lp′(Ω) to faces E ∈ Eℓ, it
is natural to define a related convergence indicator as

ηℓ =
∑

E∈Eℓ

ηℓ(E) =
∑

E∈Eℓ

hp′

E‖f‖
p′

Lp′(ωE)
, (20)

where ωE =
⋃
{T ∈ Tℓ : E ⊂ T} denotes the patch of elements adjacent to E.

Next, applying Hölder’s inequality on each face E shows
∑

E∈Eℓ

∫

E

hE|[uℓ]| ds ≤
∑

E∈Eℓ

(∫

E

hE ds
)1/p′(∫

E

hE|[uℓ]|
p ds

)1/p

. |Ω|1/p′
( ∑

E∈Eℓ

hE

∫

E

∣∣[uℓ]
∣∣p ds

)1/p

.

(21)

Thus, a straightforward generalization of the indicator ‖hℓ[uℓ]‖L1(∪Eℓ), is given by

µ
(0)
ℓ =

∑

E∈Eℓ

µ
(0)
ℓ (E) =

∑

E∈Eℓ

hE‖[uℓ]‖
p
Lp(E). (22)

In many situations, this quantity is a bad candidate for steering the mesh refinement.
To see this, let us consider the Dirichlet problem

−∆u = f in Ω with homogeneous boundary conditions u = 0 on ∂Ω, (23)

where W (F ) = 1
2
|F |2, p = 2, Γ(i) = ∂Ω, and g = 0. For this problem, the “natural”

error indicator is given by

̺2
ℓ =

∑

E∈Eℓ∩Ω

hE

∫

E

∣∣[∇uℓ]
∣∣2 ds+

∑

E∈Eℓ∩∂Ω

hE

∫

E

∣∣∂τuℓ

∣∣2 ds+
∑

E∈Eℓ

ηℓ(E),

where ηℓ(E) is defined in (20) and where ∂τuℓ denotes the tangential part of the
gradient. This indicator is reliable and efficient (up to data oscillations) in the sense
that

C−1
rel ‖u− uℓ‖W1,2(Ω) ≤ ̺ℓ ≤ Ceff

(
‖u− uℓ‖W1,2(Ω) + ‖hℓ(f − Πℓf)‖L2(Ω)

)
,

and it leads to a convergent adaptive algorithm [10]. Furthermore, using the fact that
normal jumps can be estimated above by the ηℓ(E) terms (cf. [10, Theorem 3.5]) and
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that the tangential jump of the gradient can be estimated by the tangential jump of
the function, it follows that this indicator is equivalent to

˜̺2
ℓ =

∑

E∈Eℓ

{
h−1

E

∫

E

∣∣[uℓ]
∣∣2 ds+ ηℓ(E)2

}
=

∑

E∈Eℓ

{
h−1

E ‖[uℓ]‖
2
L2(E) + ηℓ(E)2

}

This argument suggests that the indicator µ
(0)
ℓ from (22) is not suitable, since it uses

the “wrong” scaling of the mesh size. It therefore appears natural to us to use the
generalization

µ
(1)
ℓ =

∑

E∈Eℓ

h1−p
E

∫

E

∣∣[uℓ]
∣∣p ds =

∑

E∈Eℓ

h1−p
E ‖[uℓ]‖

p
Lp(E) (24)

as a convergence indicator. Simple scaling arguments show why this is, in fact, the
correct generalization (cf. [8] and Lemma 7). We will now define a further refinement

indicator which can be thought of as an interpolation between µ
(0)
ℓ and µ

(1)
ℓ : for some

fixed parameter α ∈ [0, 1], let

µ
(α)
ℓ =

∑

E∈Eℓ

µ
(α)
ℓ (E) =

∑

E∈Eℓ

h1−αp
E ‖[uℓ]‖

p
Lp(E). (25)

Although we have initially motivated the definition of µ
(α)
ℓ through the error estimator

for the Dirichlet problem, we can give an alternative interpretation. On the Dirichlet

boundary, µ
(α)
ℓ (E) weakly imposes the Dirichlet condition, while in the interior, it

can be thought of as a measure of the local regularity of ∇uℓ. In this sense, it seems
a reasonable indicator which is independent of the problem solved.

We conclude this discussion with two simple observations. The first allows us to

replace the term ‖hℓ[uℓ]‖L1(∪Eℓ) in Theorem 6 by µ
(α)
ℓ , while the second is intended

to simplify the subsequent analysis.

Lemma 7. Suppose that 0 ≤ α ≤ 1, ℓ ∈ N, and uℓ ∈ Aℓ, then

‖hℓ[uℓ]‖
p
L1(∪Eℓ)

≤ Cµ µ
(α)
ℓ . (26)

Furthermore, we have the bounds

µ
(α)
ℓ (E) ≤C ′

µ‖h
1−α
ℓ ∇uℓ‖

p
Lp(ωE) for all interior faces E ∈ E int

ℓ , (27)

µ
(α)
ℓ (E) ≤C ′′

µ

(
‖h1−α

ℓ ∇uℓ‖
p
Lp(ωE) + ‖h1−α

ℓ ∇g‖p
Lp(ωE)

)
for all E ∈ Eℓ\E

int
ℓ . (28)

The constants Cµ, C
′
µ, and C ′′

µ depend on the shape regularity σ(Tℓ), and Cµ addi-
tionally on |Ω| and on diam(Ω).

Proof. The first bound follows from (21). To prove (27), let T± ∈ Tℓ denote the
unique elements with E = T+ ∩ T− ∈ E int

ℓ and ωE = T+ ∪ T−. If zE denotes the
barycentre of E, then [uℓ](zE) = 0 yields

|[uℓ]| ≤ hE|∇[uℓ]| ≤ hE(|∇uℓ|T+ | + |∇uℓ|T−|) pointwise on E.
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Shape regularity of Tℓ gives |T±|h(1−α)p
E ≈ |E|hp

Eh
1−αp
E and results in

µ
(α)
ℓ (E) . h1−αp

E |E|hp
E(|∇uℓ|T+ |p + |∇uℓ|T−|p) ≈ h

(1−α)p
E ‖∇uℓ‖

p
Lp(ωE).

To prove (28) note that [uℓ]
(i) = 0 on E if E ∩ Γ(i) = ∅. We may therefore assume,

without loss of generality, that Γ(i) = ∂Ω for all i = 1, . . . , m, and hence [uℓ] = g−uℓ

on ∂Ω. The trace inequality reads

hE‖g − uℓ‖
p
Lp(E) . ‖g − uℓ‖

p
Lp(T ) + hp

E‖∇(g − uℓ)‖
p
Lp(T ).

Note that
∫

E
(g − uℓ) ds = 0 by definition of Aℓ ∋ uℓ, and recall that in the proof of

Lemma 2 it was sufficient to have mean zero on one single face to obtain the first-
order approximation property. This provides ‖g − uℓ‖Lp(T ) . hT‖∇(g − uℓ)‖Lp(T ),
which gives

µ
(α)
ℓ (E) = h1−αp

E ‖[uℓ]‖
p
Lp(E) = h1−αp

E ‖g − uℓ‖
p
Lp(E) . hp−αp

E ‖∇(g − uℓ)‖
p
Lp(T )

and immediately implies (28). �

3.3. Adaptive Strategy. We are now in a position to formulate an adaptive mesh
refinement strategy for the solution of (13). In what follows, α ∈ [0, 1] is an arbitrary
but fixed parameter of the algorithm.

Algorithm 1. Input: Marking parameters θ ∈ (0, 1], α ∈ [0, 1]; Initial mesh T0.
Set ℓ = 0.

(a) Compute a discrete minimizer uℓ ∈ argminJ (Aℓ).

(b) Compute refinement indicators ηℓ and µ
(α)
ℓ from (20) and (25), respectively.

(c) Generate a set of marked faces Mℓ ⊆ Eℓ such that
∑

E∈Mℓ

(
ηℓ(E) + µ

(α)
ℓ (E)

)
≥ θ(ηℓ + µ

(α)
ℓ ) (29)

(d) Generate a regular triangulation Tℓ+1, where at least the marked faces E ∈ Mℓ

are refined.
(e) Increase ℓ 7→ ℓ+ 1 and go to (a). �

A marking strategy satisfying (29) is often called Dörfler marking. It was a crucial
ingredient in the first convergence proofs of the adaptive finite element method and
has been identified to also play an important role in obtaining optimal convergence
rates [13], in which case the cardinality of the set Mℓ should be minimal. Generically,
the value θ = 1 corresponds to uniform refinement, whereas small θ leads to highly
adapted meshes.

We use newest vertex bisection in step (4) to ensure that the sequence of trian-
gulations (Tℓ)ℓ∈N generated by Algorithm 1 is uniformly shape-regular. However,
besides the uniform shape-regularity, the following convergence result only requires
that marked faces are reduced by a uniform factor κ ∈ (0, 1), i.e.,

hE′ ≤ κhE for all E ′ ∈ Eℓ+1 with E ′ ⊂ E ∈ Mℓ. (30)
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Thus, the precise refinement rule in step (d) is fairly arbitrary.

Theorem 8 (Convergence of the Adaptive Algorithm). Suppose that the
sequence (Tℓ)ℓ∈N generated by Algorithm 1 is uniformly shape-regular, that it satis-
fies (30), and assume in addition that 0 ≤ α < 1. Then the refinement indicators
converge to zero, i.e.,

ηℓ + µ
(α)
ℓ

ℓ→∞
−−−→ 0, (31)

and the sequence (uℓ)ℓ∈N of discrete minimizers satisfies the conditions of Theorem 6.

Proof. This proof is largely inspired by [22].
As in the proof of Theorem 6, it follows that J (uℓ) and hence ‖uℓ‖Lp(Ω)+‖∇uℓ‖Lp(Ω)

are bounded sequences.

To abbreviate the notation, we now drop the superscript (α) in µ
(α)
ℓ , and we write

ηℓ(Sℓ) :=
∑

E∈Sℓ

ηℓ(E) and µℓ(Sℓ) :=
∑

E∈Sℓ

µℓ(E) for all Sℓ ⊆ Eℓ.

We consider the set of all faces resp. all elements which are eventually not refined,
i.e.,

Ẽ :=
⋂

k≥0

⋃

ℓ≥k

Eℓ and T̃ :=
⋂

k≥0

⋃

ℓ≥k

Tℓ.

It is evident that T ∈ T̃ if, and only if, all faces of T belong to Ẽ . For the proof
of (31), we split the indicators into

ηℓ + µℓ =
(
ηℓ(Eℓ\Ẽ) + µℓ(Eℓ\Ẽ)

)
+

(
ηℓ(Eℓ ∩ Ẽ) + µℓ(Eℓ ∩ Ẽ)

)
.

Step 1: In the first step, we will prove that

ηℓ(Eℓ \ Ẽ) + µℓ(Eℓ \ Ẽ)
ℓ→∞
−−−→ 0. (32)

Recall that ωE :=
⋃ {

T ∈ Tℓ : E ⊂ ∂T
}
. Setting Ω̃ℓ =

⋃ {
ωE : E ∈ Eℓ \ Ẽ

}
, we

first claim that χeΩℓ
hℓ

ℓ→∞
−−−→ 0 a.e. in Ω. To see this, fix x ∈ Ω\

( ⋃
ℓ

⋃
Eℓ

)
outside of

the skeletons of all Tℓ which form a null-set. For each ℓ, there is a unique element
Tℓ ∈ Tℓ with x ∈ Tℓ. If limℓ hTℓ

= 0, we conclude limℓ(χeΩℓ
hℓ)(x) = 0. Otherwise, Tℓ

is only refined finitely many times, i.e., there holds Tℓ = Tℓ0 for some ℓ0 ∈ N and all

ℓ ≥ ℓ0, i.e., Tℓ ∈ T̃ and therefore its faces belong to Ẽ . Consequently, x 6∈ Ω̃ℓ for all
ℓ ≥ ℓ0, and hence (χeΩℓ

hℓ)(x) = 0 for ℓ ≥ ℓ0. We have therefore shown that

lim
ℓ→∞

χeΩℓ
hℓ = 0 pointwise a.e. in Ω.

During mesh-refinement, the local mesh-size hℓ is pointwise decreasing. Conse-
quently, the dominated convergence theorem yields

χeΩℓ
hβ

ℓψ
ℓ→∞
−−−→ 0 strongly in Lq(Ω), (33)

for all β > 0, and ψ ∈ Lq(Ω). With β = 1 and ψ = f , we infer

ηℓ(Eℓ\Ẽ) =
∑

E∈Eℓ\eE

‖hℓf‖
p′

Lp′(ωE)
. ‖hℓf‖

p′

Lp′(eΩℓ)
= ‖χeΩℓ

hℓf‖
p′

Lp′(Ω)

ℓ→∞
−−−→ 0.



14 C. ORTNER & D. PRAETORIUS

Before we prove convergence of µℓ(Eℓ\Ẽ) to zero, it is instructive to consider the
refinement indicator ‖hℓ[uℓ]‖L1(∪Eℓ) first. Using the facts that hE ≈ hℓ in ωE , and
that [uℓ](zE) = 0, we can estimate

∫

E

hE|[uℓ]| ds . h2
E

∫

E

∣∣[∇uℓ]
∣∣ ds .

∫

ωE

hℓ|∇uℓ| dx.

Summing over E ∈ Eℓ \ Ẽ and using Hölder’s inequality, we obtain

‖hℓ[uℓ]‖L1(∪(Eℓ\eE)) .
∑

E∈Eℓ\eE

‖hℓ∇uℓ‖L1(ωE) . ‖hℓ∇uℓ‖L1(eΩℓ)
≤ ‖hℓ‖Lp′(eΩℓ)

‖∇uℓ‖Lp(eΩℓ)
.

According to (33), with β = 1 and ψ = 1, the upper bound tends to zero as ℓ→ ∞.

If we attempt to use the same idea for proving that µℓ(Eℓ \ Ẽ) → 0 then, using (27)
and (28), we first obtain the following bound:

µℓ(Eℓ \ Ẽ) . ‖h(1−α)
ℓ ∇uℓ‖

p

Lp(eΩℓ)
+ ‖h(1−α)

ℓ ∇g‖p

Lp(eΩℓ)
. (34)

Using (33), with β = 1 − α > 0 and ψ = ∇g, we immediately find that the second
integral on the right-hand side of (34) converges to zero. It thus only remains to
treat the first term on the right-hand side. Unfortunately, we control ∇uℓ only in
Lp(Ω)m×n. Therefore, we cannot immediately use Hölder’s inequality as before to
verify that the first term on the right-hand side of (34) tends to zero. Since we don’t
know whether ∇uℓ converges pointwise a.e., we have no hope of using Fatou’s lemma
either. Instead, we make use of the additional flexibility provided by the condition
α < 1 to estimate

‖h(1−α)
ℓ ∇uℓ‖

p

Lp(eΩℓ)
=

∫

eΩℓ

h
(1−α)p
ℓ |∇uℓ|

p dx ≤
∑

T∈Tℓ

T⊆eΩℓ

h
n+(1−α)p
T |∇uℓ|T |

p

≤
( ∑

T∈Tℓ

T⊆eΩℓ

h
(n+(1−α)p)q/p
T |∇uℓ|T |

q
)p/q

.
( ∑

T∈Tℓ

T⊆eΩℓ

h
nq/p+(1−α)q−n
T

∫

T

|∇uℓ|
q
)p/q

,

where 1 ≤ q < p. In the second estimate above we used the bound ‖ · ‖ℓp ≤ ‖ · ‖ℓq .
Setting β = n(q/p− 1) + (1 − α)q, we obtain

‖h(1−α)
ℓ ∇uℓ‖

p

Lp(eΩ)
.

(∫

eΩℓ

hβ
ℓ |∇uℓ|

q dx
)p/q

≤
∥∥hβ

ℓ χeΩℓ

∥∥p/q

Lp/(p−q) ‖∇uℓ‖
p
Lp(Ω).

by use of Hölder’s inequality. For this bound to tend to zero, we require that β > 0
which can be achieved by choosing q sufficiently close to p and using the fact that
α < 1. Thus, we have successfully established (32).

Step 2: In the second step, we use the properties of our marking strategy to
conclude the proof of (31). Namely, observe that at step ℓ any marked face will be
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refined during this step, i.e.,

Mℓ ⊂ Eℓ \ Ẽ .

Therefore, (29) and Step 1 imply that

θ(ηℓ + µℓ) ≤ ηℓ(Mℓ) + µℓ(Mℓ) ≤ ηℓ(Eℓ \ Ẽ) + µℓ(Eℓ \ Ẽ) → 0,

as ℓ→ ∞, which concludes the proof. �

Remark 3. We have already remarked in Section 3.2 that, for α < 1, our refinement
indicators are not reliable error indicators, even for a simple Dirichlet problem with
homogeneous boundary conditions. Furthermore, our refinement indicators have no
information about the free boundary which gives further indication to its “incom-
pleteness”. We found it therefore somewhat surprising that we were able to prove
convergence of our adaptive strategy.

We note also that our proof does not extend in an obvious way to conforming finite
element methods, where the upper bound (15) is false even for quadratic functionals.

�

Remark 4. We have only proven convergence of our adaptive algorithm for the
case α < 1. It does not appear straightforward to include the case α = 1 as well.
The analysis in [22] shows that obtaining strong convergence of the sequence (uℓ)ℓ∈N

to some ũ a priori (instead of merely weak convergence) is the key. However, this
appears difficult for problems of the generality which we consider here.

In practice, one may safely ignore this fact and choose α = 1, possibly imple-
menting a safeguard strategy which changes α if it should become apparent that
ηℓ + µℓ →/ 0. �

4. Numerical Experiments

We have implemented Algorithm 1 for two two-dimensional model problems: the
Laplace problem with Dirichlet and with Neumann boundary conditions as well as
the example of Foss, Hrusa, and Mizel [19] which exhibits a Lavrentiev gap. Be-
fore we present the computational experiments, we briefly outline the details of our
implementation.

(a) The solution of the optimization problem is achieved by a damped Newton
method if it is nonlinear and a direct solver if it is linear.

(b) We have found that Dörfler’s marking strategy with a minimal set Mℓ yields
very slow mesh growth for the highly nonlinear and singular problems which we
consider here. Therefore, our strategy is to mark a fixed fraction of edges (with
largest indicators) for refinement, i.e.,

♯Mℓ ≥ θ♯Eℓ with min
E∈Mℓ

(
ηℓ(E) + µ

(α)
ℓ (E)

)
≥ max

E∈Eℓ\Mℓ

(
ηℓ(E) + µ

(α)
ℓ (E)

)
.

Note that then,
∑

E∈Mℓ

(
ηℓ(E) + µ

(α)
ℓ (E)

)
≥

θ

1 + θ

∑

E∈Eℓ

(
ηℓ(E) + µ

(α)
ℓ (E)

)
,
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so that Dörfler marking (29) still holds with θ replaced by θ/(1 + θ). We usually
chose θ = 0.25 which roughly doubles the number of elements at each iteration.

(c) The mesh refinement is achieved via newest vertex bisection which halves every
marked edge and which preserves shape regularity.

(d) We terminate the algorithm when a prescribed number of elements is attained.

For the computations in Section 4.1, we estimate the error for the energy by com-
paring it to a conforming computation. If f ≡ 0, then

J (uℓ) ≤ inf J (A) ≤ J (ū) for all ū ∈ A.

If f is non-zero then the above estimate depends on an unknown quantity, namely
‖∇u‖Lp where u ∈ argminJ (A). However, we have observed that even in that
case, J (uℓ) is monotonically increasing towards the energy of the exact solution.
Therefore, we compute a conforming ū using a standard adaptive P1-finite element
method [9] and take

inf J (A) − J (uℓ) ≤ J (ū) − J (uℓ)

as a slightly heuristic energy error estimate.

4.1. Linear Laplacian. We begin our experiments with the Laplace equation on
the slit domain Ω = (−1, 1)2 \ [0, 1) × {0}. It is equivalently formulated by setting
W (F ) = 1

2
|F |2 with m = 1 and n = 2. First, we consider the pure Dirichlet problem

−∆u = 1 in Ω with homogeneous boundary conditions u = 0 on ∂Ω,

where in the energy formulation

Γ(1) = ∂Ω, f = 1, g = 0. (35)

In order to investigate the effect of a Neumann boundary, we also consider the mixed
boundary value problem

−∆u = 0 in Ω with ∂u/∂n = 0 on ΓN and u = g on ΓD,

where |ΓD ∩ ΓN | = 0 and ∂Ω = ΓD ∪ ΓN . We choose

Γ(1) = ΓD = ∂Ω ∩ {x1 = 1}, f = 0, g(1, x2) = sign(x2). (36)

The convergence rates for problems (35) and (36) are shown in Figures 1 and 2,
respectively. As expected, we observe that the accuracy improves as α approaches
1.0. In the Dirichlet problem, the convergence rate for α = 1.0 and for α = 0.9
can barely be distinguished. What is surprising though is that, for the Neumann
problem, the value of α does not seem to affect the convergence rate at all. We have
no explanation for this effect but we note that we will also observe it in our second
model problem.

4.2. Lavrentiev Phenomenon. For our second numerical experiment, we use an
example which exhibits the Lavrentiev gap phenomenon — the focus of our investi-
gation. To this end, we slightly modify the example of Foss, Hrusa and Mizel [19].
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Figure 1. Convergence rates for Algorithm 1 applied to prob-
lem (35). As α ր 1, the convergence rate approaches the optimal
rate ♯T −1.
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Figure 2. Convergence rates for Algorithm 1 applied to prob-
lem (36). Contrary to intuition, the convergence rate seems to be
optimal, independent of the parameter α.

Let m = n = 2, let the domain be the half disk Ω = {|x| < 1, x2 > 0}, and let

Γ(1) = (−1, 0)×{0}∪{|x| = 1, x2 > 0} and Γ(2) = (0, 1)×{0}∪{|x| = 1, x2 > 0}.



18 C. ORTNER & D. PRAETORIUS

Furthermore, f ≡ 0, g(i) = 0 on {x2 = 0}, and g = (cos θ
2
, sin θ

2
) on {|x| = 1} in

polar coordinates (r, θ). Thus, admissible functions are deformations of the half disk
Ω into the quarter disk {|x| < 1, x1 > 0, x2 > 0}. Suppose, for the moment, that
the stored energy density is given by

W (F ) =
(
|F |2 − 2 detF

)4
.

Convexity of W follows immediately from the fact that F 7→ (|F |2−2 detF ) is a non-
negative quadratic form. However, the associated energy functional is not coercive.
Nevertheless, Foss, Hrusa, and Mizel showed in [19] that it exhibits the Lavrentiev
gap phenomenon. The global minimum of J in A is the function

ū = r1/2
(
cos θ

2
, sin θ

2

)
,

for which J (ū) = 0. It is furthermore easy to verify that ū also minimizes the
Dirichlet integral for the same boundary conditions. Consequently, for p = 2, ū is
also the global minimizer of

Jp(v) =

∫

Ω

Wp(∇v) dx, (37)

in A, where

Wp(F ) =
(
|F |2 − 2 detF

)4
+ 1

p

(
|F1|

p + |F2|
p
)
.

Since we know the solution for p = 2 explicitly, we can explicitly compute the energy
minimum,

inf J2(A) = J2(ū) = π/4.

In Figure 3, we plot the convergence rate for the minimization problem, for varying
α. We observe the same effect as for the Neumann problem in Section 4.1: surpris-
ingly, the convergence rate seems to be independent of the parameter α. While it is
encouraging that the convergence rate for the energy appears to be linear, despite the
fact that we are solving a highly non-linear and singular problem (note that J2 is not
even continuous in the strong topology of W1,2(Ω)2), we strongly suspect that this
is related to the particularly simple structure of W2 and the fact that ∇ū minimizes
the first term of W2(∇ū) pointwise.

4.3. Verification of Lavrentiev gaps. In our final experiment, we demonstrate
how one could verify whether a given minimization problem exhibits a Lavrentiev
gap. We consider the energy functional Jp from (37). For the parameters p =
2, 3, 4, 6, we apply Algorithm 1 with the minimization problem argminJp(A) and
obtain discrete solutions uℓ. In addition, we compute an adaptive P1-solution ūℓ for
the same problem (though possibly on different meshes) and we plot the difference
in energy Jp(ūℓ) − Jp(uℓ). The theory in [19] would lead us to expect (but except
for the case p = 2 this is not at all clear) that, for p = 2, 3 a Lavrentiev gap occurs,
while for p = 4, 6 no gap occurs. The computations which we show in Figure 4 agree
with this prediction, except possibly in the case p = 4, where they suggest that no
Lavrentiev gap may, in fact, be present.
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Figure 3. Convergence rates for Algorithm 1 applied to the mini-
mization problem u ∈ argminJ2(A), with varying marking parameter
α.
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inf Jp(A) for p = 2, 3, 4, 6. Contrary to intuition, for p = 4, the com-
putation suggests that a Lavrentiev gap is present.
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5. Conclusion

We have presented an adaptive finite element algorithm for the solution of convex
variational problems. Despite the fact that the refinement indicators are not reliable
error indicators in any classical sense, we have succeeded in proving convergence of
our adaptive scheme. To conclude, we briefly mention some possible generalizations
of our analysis.

In order for the minimization problem (5) to be well-posed (or rather, for the
direct method technique to apply), it is necessary that J is coercive in A which, in
particular, requires that elements of A satisfy a Poincaré-type inequality. Similarly,
we require a broken Poincaré-type inequality for the discrete admissible set Aℓ in
order to be able to extract weakly convergent subsequences. The entire analysis
applies whenever such a broken Poincaré-type inequality is available for Aℓ. It is
therefore straightforward to generalize the results, for example, to problems involving
pointwise constraints on the function (e.g., an obstacle problem) or on the gradient
(e.g., problems arising in plasticity).

A second important generalization is to allow W to depend on x and on u. It is
not at all clear in which generality this can be achieved. Mild dependencies such
as piecewise constant dependence on x are easily included in the analysis, however,
a strong coupling of (x, u) to ∇u must be avoided. This follows immediately upon
considering Manià’s functional [20]

J (u) =

∫ 1

0

u6
x(u

3 − x)2 dx,

which is to be minimized subject to u(0) = 0, u(1) = 1. Since the CR-FEM reduces to
the P1-FEM in one dimension, and since Manià’s example exhibits a Lavrentiev gap,
it follows that a sufficiently strong coupling of (x, u) to ∇u destroys the convergence
of the method.

Finally, the generalization to polyconvex or even quasiconvex W is even more
difficult. Here, both the upper bound (15) and the lower bound (19), i.e., the weak
lower-semicontinuity of J along the sequence uℓ, are completely open.
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