
ON THE DEFORMATION SPACE OF
CLIFFORD-KLEIN FORMS OF HEISENBERG GROUPS

ALI BAKLOUTI, IMED KÉDIM AND TARO YOSHINO

Abstract. Let H be an arbitrary closed connected subgroup of the connected, simply
connected Heisenberg G = H2n+1. We exhibit in this paper a complete description of
the deformation space T (Γ, G,H) and the moduli space M(Γ, G, H) of a discontinuous
abelian subgroup Γ of G for the homogeneous space G/H. The topological features
of deformations, namely the topological stability, the rigidity and the local rigidity are
also studied.

1. Introduction

This paper is the continuation of the papers [1] and [10] where attention is focused on
the explicit determination of the deformation space and the moduli space of a discon-
tinuous group acting on some nilpotent homogeneous spaces for which, the basis group
in question is respectively exponential solvable and two-step nilpotent. The problem of
describing explicitly deformations for Clifford-Klein forms in general settings was initi-
ated by T. Kobayashi in [8] and was formalized as Problem C by the same author in [6].
The deformation space T (Γ, G, H) was first introduced in Kobayashi ([6], (5.3.1)) and
the moduli space M(Γ, G, H) := Aut(Γ)\T (Γ, G, H) was in Kobayashi ([6], (5.3.2)) for
general homogeneous space G/H and discontinuous groups Γ.

In [10], T. Kobayashi and S. Nasrin studied the setup of a properly discontinuous action
of a discrete subgroup Γ ' Zk which acts on Rk+1 ' G/H through a certain nilpotent
affine transformation group G of dimension 2k + 1 when the connected subgroup in
question is Rk. In these circumstances, the authors gave a complete description of the
parameter space

R(Γ, G, H) :=



ϕ ∈ Hom(Γ, G)

∣∣∣∣∣∣

ϕ is injective, ϕ(Γ) is discrete and
acts properly and fixed point freely
on G/H



(1)

which is introduced in [8] for general contexts.

On the basis of this description, they determine explicitly the deformation space
T (Zk, G,Rk) by building up an accurate cross-section of the adjoint orbits of the el-
ements of R(Γ, G, H). One of the principal aims of this paper (and also the papers
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[6, 10]) is to illustrate that Problem C cited above, would be very fruitful to be pursued
in various different settings.

In [1], the two first authors tackled the case of exponential solvable Lie groups where
the subgroup H is supposed to contain the first derivative group [G,G]. They exhibited
then a complete description of the deformation space and the Moduli space. The policy
drawn for such a study seems to be pretty different from that followed in the paper
[10] but somehow tacitly generalizes it. This remark together with the above studies
arouse our interest in the consideration of the deformation space and the moduli space
in a more general context, especially when H is not predetermined. Among fundamental
motivations for seeking an explicit determination of the deformation space, is its interest
in understanding their local geometric structures which could be pretty complex when
the Clifford-Klein forms in question are not necessarily compact. This paper appears
therefore to be a new contribution of such a study in the context where the group in
question is the Heisenberg group. This enables us to utterly understand the related
topological features in this context, namely, the stability, the rigidity and the local
rigidity.

Towards that purpose, we give a complete description of both the spaces T (Γ, G, H)
and M(Γ, G, H) up to a homeomorphism without any restriction on the subgroups Γ
and H. Our study makes use of Grassmannians and carries out an accurate description
in terms of matrix-like forms. We show however that in the situation where the Clifford-
Klein form is compact, these spaces are cutely obtained to be some classical product of
set matrices.

Let us remark that one main fact to settle this setup is that the center of G = R2n+1

is one dimensional and that the Lie structure of the group in question utterly reposes
on a non-degenerate alternative form on R2n which intervenes at the level of the center,
through the pointwise law of the group G. It comes out therefore that the passage
through the quotient by the adjoint action only involves non-central coordinates. It is
noteworthy to point out here that the situation turns out to be more complicated when
for instance the center of G does not meet the direct product H · L where L designates
the syndetic hull of the discrete group Γ. In such a setting, we are of course quite away
from the setup of compact Clifford-Klein forms.

The paper is organized as follows. The next section is devoted to record some known
results about proper actions and to recall the definitions of the spaces under study.
In section 3, we recall the characterization of the parameter and deformation space in
term of homomorphisms of Lie algebras when the basis group in question is exponential
solvable. This will crucially be applied to our circumstances. Likewise, the description
of the deformation and the moduli space in the case where the subgroup H contains the
derivative group [G,G] can also be regarded as one of the main genesis for the description
for these spaces. We shall recall such a description as well. The fourth section deals with
the main results and provides complete proofs of the spaces description. The last section
is devoted to develop some examples. We hope that our results and methods could be
extended to encompass new setups, specially when the group in question is of higher
step.
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2. Preliminaries

The material dealt with in this section is based on the papers [1, 4, 5, 6, 7, 8, 9, 10, 11],
(particularly [6, chapter 5]) and on some references therein. The readers could consult
these references for broader information about the subject.

2.1. Generalities and natation. Let X be a locally compact space and K a locally
compact topological group. The action of the group K on X is said to be:

(1) Proper (in the sense of Palais [12]) if, for each compact subset S ⊂ X the set
KS = {k ∈ K : k · S ∩ S 6= ∅} is compact.

(2) Fixed point free (or merely free) if, for each x ∈ X, the isotropy group Kx = {k ∈
K : kx = x} is trivial.

(3) Properly discontinuous if, K is discrete and for each compact subset S ⊂ X the
set KS is finite.

In the case where X = G/H is a homogeneous space and K a subgroup of G, then it
is well known that the action of K on X is proper if SHS−1∩K is relatively compact for
any compact set S in G. Here, for two sets A and B of the locally compact topological
group G, the product AB is the subset {ab : a ∈ A, b ∈ B}. Likewise the action of K
on X is free if for every g ∈ G, K ∩ gHg−1 = {e}. In such cases, we abusively say that
the triple (G,H, K) is proper (respectively free). In this context, the subgroup K is said
to be a discontinuous group for the homogeneous space X, if K is a discrete subgroup
of G and K acts properly and fixed point freely on X.
For any given discontinuous subgroup Γ for the homogeneous space X, the quotient
space Γ\G/H is said to be a Clifford-Klein form for the homogeneous space G/H. It is
then well-known that any Clifford-Klein form is endowed through the action of Γ with a
manifold structure for which the quotient canonical surjection

π : G/H → Γ\G/H(2)

turns out to be an open covering and particularly a local diffeomorphism. On the other
hand, any Clifford-Klein form Γ\G/H inherits any G−invariant geometric structure
(e.g. complex structure, pseudo-Riemanian structure, conformal structure, symplectic
structure,...) on the homogeneous space G/H through the covering map π defined as
in equation (2) above. We designate by Hom(Γ, G) the set of group homomorphisms
from Γ to G endowed with the point wise convergence topology. The same topology is
obtained by taking generators γ1, ..., γk of Γ, then using the injective map

Hom(Γ, G) ↪→ G× · · · ×G, ϕ 7→ (ϕ(γ1), ..., ϕ(γk))

to equip Hom(Γ, G) with the relative topology induced from the direct product G ×
· · · × G. We consider then the parameter space R(Γ, G, H) of Hom(Γ, G) defined as in
formula (1) above, this set plays an important role as we will see later. According to
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this definition and as earlier, for each ϕ ∈ R(Γ, G, H), the space ϕ(Γ)\G/H is a Clifford-
Klein form which is a Hausdorff topological space and even equipped with a structure of
a manifold for which, the quotient canonical map is an open covering.

Let now ϕ ∈ R(Γ, G,H) and g ∈ G, we consider the element ϕg := g−1 · ϕ · g of
Hom(Γ, G) defined by

ϕg(γ) = g−1ϕ(γ)g, γ ∈ Γ.

It is then clear that the element ϕg ∈ R(Γ, G,H) and that the map

ϕ(Γ)\G/H −→ ϕg(Γ)\G/H, ϕ(Γ)xH 7→ ϕg(Γ)g−1xH

is a natural diffeomorphism. We consider then the orbits space

T (Γ, G, H) = R(Γ, G, H)/G

instead of R(Γ, G, H) in order to avoid the unessential part of deformations arising inner
automorphisms and to be quite precise on parameters. We call the set T (Γ, G, H) as the
space of the deformation of the action of Γ on the homogeneous space G/H.

On the other hand, let the group Aut(Γ) act on Hom(Γ, G) by

T · ϕ(γ) := ϕ(T−1(γ)), ϕ ∈ Hom(Γ, G), T ∈ Aut(Γ), γ ∈ Γ.

It is then easy to check that the group Aut(Γ) leaves the parameter space R(Γ, G, H)
invariant and its action on it is G− equivariant. We define then (to avoid this unessential
part too) the Moduli space as the double coset space

M(Γ, G, H) := Aut(Γ)\R(Γ, G, H)/G.

For ϕ ∈ R(Γ, G, H), the discontinuous subgroup ϕ(Γ) for the homogeneous space G/H
is said to be locally rigid as a discontinuous group of G/H in the sense of Kobayashi
[8], if the orbit of ϕ through the inner conjugation is open in the set R(Γ, G, H). This
means equivalently that any point sufficiently close to ϕ should be conjugate to ϕ under
an inner automorphism of G. So, the homomorphisms which are locally rigid are those
which correspond to those which are isolated points in the deformation space T (Γ, G, H).
When every point in R(Γ, G, H) is locally rigid, the deformation space turns out to be
discrete and then we say that the Clifford-Klein form Γ\G/H can not deform continu-
ously through the deformation of Γ in G. If a given ϕ ∈ R(Γ, G, H) is not locally rigid,
we say that it admits a continuous deformation and that the related Clifford-Klein form
is continuously deformable.

In the same context, one says that ϕ ∈ R(Γ, G, H) is rigid, it its G−orbit G ·φ is open
in Hom(Γ, G).

The homomorphism ϕ is said to be topologically stable or merely stable in the sense
of Kobayashi-Nasrin [10], if there is an open set in Hom(Γ, G) which contains ϕ and is
contained in R(Γ, G, H). When the set R(Γ, G, H) is an open subset of Hom(Γ, G), then
obviously each of its elements is stable, which is the case for irreducible Riemannian
symmetric spaces. Furthermore, we precise in this setting that the concept of stability
may be one fundamental genesis to understand the local structure of the deformation
space.
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2.2. Characterization of the parameter and deformation space. We keep and
remind our notations and settings. g will denote a n-dimensional real exponential solvable
Lie algebra, G will be the associated connected and simply connected exponential Lie
group. The exponential map

exp : g → G

is a global C∞−diffeomorphism from g into G. Let log denote the inverse map of exp.
The Lie algebra g acts on g by the adjoint representation adg, that is:

adg(T )(Y ) = ad(T )(Y ) = [T, Y ], T, Y ∈ g.

The group G acts on g by the adjoint representation AdG, defined by AdG(g) = Ad(g) =
exp(ad(T )), g = exp T ∈ G.

The following upshot which generalizes the result of Nasrin [15], has been obtained
separately in [2] and [18], is quite important and plays an important role in this paper.

Theorem 2.1. Let G be a connected simply connected at most three step nilpotent Lie
group, H and K be connected subgroups of G. Then the following assertions are equiva-
lent:

(i) K acts properly on G/H.
(ii) The action of K on G/H is free, that is K ∩ gHg−1 = {e} for any g ∈ G.
(iii) k ∩ Adgh = {0} for any g ∈ G. Here h and k are the Lie algebras of H and K

respectively.

Let X = G/H be a homogeneous space, with G a connected simply connected expo-
nential solvable Lie group and H a closed connected subgroup of G. Let Γ be a discrete
subgroup of G of rank k, and define the parameter space R(Γ, G, H) as given in (1). Let
g, h designate the Lie algebras of G and H respectively. In [1], we have obtained the
following characterization of the parameter and the deformation space as follows. Let
L be the syndetic hull of Γ (see Theorem (3.1) of [1]). Recall that the Lie subalgebra l
of L is the real span of the abelian lattice log Γ, which is generated by log γ1, . . . , log γk

where γ1, . . . , γk is a set of generators of Γ. Then the map

El : Hom(l, g) → gk := g× · · · × g (k times), ψ 7→ (ψ(log(γ1)), . . . , ψ(log(γk)))

is also injective. We consider the topology induced on Hom(l, g) by the injection, which
can also be defined as the point wise convergence topology, we identify here gk to L(l, g),
the set of linear maps from l to g. Now, the group Aut(Γ) can be identified to a subgroup
of Aut(l) which leaves log Γ stable. Therefore Aut(Γ) acts linearly on l by,

T · (log γi) = log(T (γi)), i = 1, . . . , k, T ∈ Aut(Γ)(3)

and leaves the lattice log Γ stable. The induced action on Hom(l, g) is given by

(T · ψ)(log γi) = ψ(T−1 · (log γi)), i = 1, . . . , k, T ∈ Aut(Γ), ψ ∈ Hom(l, g).(4)

The group G acts also on Hom(l, g) by

ψ · g = Adg−1 ◦ψ.(5)
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The following useful result was obtained in [1].

Theorem 2.2. Let G be an exponential solvable Lie group, Γ ∼= Zk a discrete subgroup
of G and L = exp(l) its syndetic hull. Then the parameter space is given by

R(Γ, G, H) =

{
ψ ∈ Hom(l, g)

∣∣∣∣
dim ψ(l) = dim l
exp ψ(l) acts properly on G/H

}
.

The deformation space can equivalently be described as:

T (Γ, G, H) =

{
ψ ∈ Hom(l, g)

∣∣∣∣
dim ψ(l) = dim l
exp ψ(l) acts properly on G/H

} /
Ad(G),

where the action Ad of G is given as in (5).

2.3. Deformation and moduli space for normal subgroups. This subsection is
devoted to describe the deformation and the moduli space when the subgroup H contains
the derivative group [G,G] and G is exponential. One of the important feature of this
setting is as remarked in [1], that every discrete subgroup which acts properly on G/H is
abelian, which allows us to use the above characterization. The results of this subsection
will crucially be used to have the description of the spaces in the case of Heisenberg
groups. We start then to recall some results on Grassmannians.

Let M◦
n,k(R) be the set of the matrices of rank k in Mn,k(R), we denote by Gn,k(R) be

the Grassmannian of k dimensional linear subspaces of Rn and

η : M◦
n,k(R) −→ Gn,k(R)

M 7→ M(Rk)

be the canonical surjection The linear group GLk(R) acts on M◦
n,k(R) by right side

multiplication and η(M) = η(M ′) if and only if there exist A ∈ GLk(R) such that
M ′ = MA. This means that the column vectors of an element of M◦

n,k(R) generate an
element of Gn,k(R) and the column vectors of two elements of M◦

n,k(R) generate the same
element of Gn,k(R) if and only if one of them is a multiple of the other by an element of
GLk(R). It follows therefore that Gn,k(R) is identified with M◦

n,k(R) via the equivalence
relation:

M ∼ M ′ in M◦
n,k(R) if and only if M ′ = MA for some A ∈ GLk(R).

So, we regard the space Gn,k(R) as the quotient space M◦
n,k(R)/∼ := M◦

n,k(R)/GLk(R),
endowed with the quotient topology. Let

I(n, k) = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}.
For M ∈ Mn,k(R) and α = (i1, . . . , ik) ∈ I(n, k), we denote by Mα its k × k relative
minor and Uα = {M ∈ M◦

n,k(R) : Mα = Ik}. It is not hard to check that the restriction
ηα of η on Uα is a homeomorphism between Uα and the open set ηα(Uα). Furthermore

Gn,k(R) =
⋃

α∈I(n,k)

ηα(Uα).(6)
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It is well know that M◦
n,k(R) is a total space of a GLk(R)-principal bundle, with

the base space equal to the Grassmannian Gn,k(R). The sets η−1(ηα(Uα)), α ∈ I(n, k)
constitute an open covering of M◦

n,k(R) and for every α the map

χα : GLk(R)× ηα(Uα) → η−1(ηα(Uα))
(A,W ) 7→ η−1

α (W )A
(7)

is a local trivialization, its inverse is the map M 7→ (
Mα, η(M)

)
and for every W ∈ ηα(Uα)

the map χα,W : GLk(R) → FW given by

χα,W (A) = η−1
α (W )A,

is a homeomorphism, where FW is the orbit of η−1
α (W ), its inverse is the map defined by

χ−1
α,W (M) = Mα.

Let h be a subalgebra of g containing [g, g]. We Fix a basis X1, . . . , Xn of g passing
through h and [g, g] and we identify g to Rn through this basis. Let s = dim h, l =
dim [g, g] and consider the bilinear forms b1, . . . , bl defined by

[X, Y ] =
n∑

i=1

bi(X, Y )Xi

If we identify the space of the linear maps L(l, g) to Mn,k(R), then the set Hom(l, g) is
identified to the GLk(R)−stable set

V = {M ∈ Mn,k(R) : tMJbi
M = 0, i = 1, . . . , l},(8)

where Jb1 , . . . Jbl
designate the matrices of b1, . . . , bl written through our basis. Let also

for α ∈ I(n, k), Vα = V ∩ Uα. The group G acts on Hom(l, g) by composition on the
left. Furthermore for every

α ∈ Is(n, k) = {(i1, . . . ik) ∈ I(n, k), i1 > s},(9)

the set Vα is G-stable and we have,

Theorem 2.3. Let G be an exponential solvable Lie group of dimension n, H a connected
subgroup of dimension s which contains [G,G] and Γ a rank k discontinuous subgroup
for G/H. Then

T (Γ, G, H) =
⋃

α∈Is(n,k)

Tα and M(Γ, G, H) =
⋃

α∈Is(n,k)

Mα,

where for every α ∈ Is(n, k), the set Tα is an open subset of T (Γ, G, H) homeomorphic to
the product GLk(R)× (Vα/G) and Mα is an open subset of M(Γ, G,H) homeomorphic
to the product GLk(R)/GLk(Z)× (Vα/G).

We point out here that this result stems from the fact that the parameter space is
the total space of a topological GLk(R)-principal bundle. A direct consequence of this
result, is the following fact concerning the topological features of Clifford-Klein forms.
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Theorem 2.4. Let G be an exponential solvable Lie group, H ⊂ G a normal connected
subgroup and Γ ' Zk a discrete subgroup of G. Then R(Γ, G, H) is an open set in
Hom(Γ, G). That is, every element of R(Γ, G, H) is stable. If in addition H contains
[G,G], then every Clifford-Klein form Γ\G/H is continuously deformable. Actually the
local rigidity propriety fails to hold for every element in R(Γ, G, H).

3. The case of Heisenberg groups

From now on, g := h2n+1 will denote the Heisenberg Lie algebra of dimension 2n + 1.
It can be defined as a real vector space, with a skew-symmetric bilinear form b of rank
2n and a fixed generator Z of the kernel of b. The center z of g is then the kernel of b
and it is the one dimensional subspace [g, g], where for X, Y ∈ g, the Lie bracket is given
by

[X,Y ] = b(X, Y )Z.

3.1. Some useful tools. This subsection aims to prove some structure results concern-
ing Heisenberg groups. Such results are quite important and will crucially be used in
the sequel of the paper. Roughly speaking, it consists in building a symplectic basis of
g constructed from a given subalgebra. We begin by proving the following:

Proposition 3.1. Let h be a Lie subalgebra of g. Then there exists a basis Bh =
{Z,X1 . . . , Xn, Y1, . . . , Yn} of g with the Lie commutation relations

[Xi, Yj] = δi,jZ, i, j = 1, ..., n

and satisfying:
1) If z ⊂ h, then there exist two integers p, q ≥ 0 such that the family

{Z, X1, . . . , Xp+q, Y1, . . . , Yp}
constitutes a basis of h.
2) If z 6⊂ h, then dim h ≤ n and h is generated by X1, . . . , Xs, where s = dim h. The
symbol δi,j designates here the Kronecker index. The basis Bh is said to be a symplectic
basis of g adapted to h.

Proof. 1) Note that the assertion is obviously true if h = z. We can and do assume then
that h ! z, the kernel of the restriction b|h is therefore non trivial, and there exists a
subalgebra V0 such that ker b|h = z ⊕ V0. For any complementary subspace V1 of z ⊕ V0

in h, the bilinear form b|V1 is non degenerated. Let p, q ≥ 0 such that dim V0 = q and
dim V1 = 2p. Let now

N := {x ∈ g : b(x, V1) = 0}.
Remark that g = N ⊕ V1. Indeed, note first that N ∩ V1 = ker b|V1 = {0}. We now
consider the map

f : g −→ V ∗
1

x 7→ b(x, ·)
which is surjective and verifies ker f = N . We deduce therefore for dimension reasons
that g = V1 ⊕N . Let N1 be any supplementary subspace of z in N , that is N = z⊕N1.
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For x ∈ ker b|N1 , we have b(v, x) = 0 for all v ∈ g which means that x is central in g.
But the intersection of N1 and z is trivial, then ker b|N1 = {0} and finally the restriction
b|N1 is non degenerate. Up to this step, one decomposes g = z ⊕ V1 ⊕ N1 as a sum of
b-orthogonal subspaces and we can assume that V0 is an isotropic subspace of N1. It
is therefore well known that any basis of V0 can be extended to a symplectic basis of
N1 and the result follows by taking any symplectic basis of V1, a symplectic basis of N1

passing through V0, and the generator of z.
2) Assume now that z 6⊂ h. Let V be a complementary subspace to z in g containing h.
Then b|V is non degenerate and h is an isotropic subspace of V , in particular dim h ≤ n.
Take any basis of h and extend it to a symplectic basis of V by adding the central vector
Z. We obtain a symplectic basis of g adapted to h. ¤

We shall now make use of the upshot above to explicitly determine the deformation
and the moduli spaces in our context. Remark first that the matrix Jb of b written in
Bh is

Jb := M (b, Bh) =




0 ˙ ˙ ˙ 0
(0) (−In)

.

.

.
0 (In) (0)




.

Using proposition 3.1 above, one can view G as the direct product of D = R2n and R
with the following point wise multiplication

g1g2 = (v + w, s + t +
1

2
b(v, w)), g1 = (v, s), g2 = (w, t)

where b is explicitly given on D by:

b(v, w) = 〈v1, w2〉 − 〈v2, w1〉, v = (v1, v2), w = (w1, w2)

where v1, w1 designate the coordinates of v and w respectively through the basis vectors
(X1, ..., Xn) and v2, w2 their coordinates through the vectors (Y1, ..., Yn). We get now
a nice characterization of the proper action for the Heisenberg setting using Theorem
(2.1). We have the following:

Lemma 3.2. Let h, l be two subalgebras of g and H = exp h. Then exp l acts properly
on G/H if and only if one of these two properties is satisfied:

ı) z ⊂ h and l ∩ h = {0}.
ıı) z 6⊂ h, l ∩ h = {0} and z ∩ (h⊕ l) = l ∩ z.

Proof. The Heisenberg Lie algebra is a two step nilpotent Lie algebra. Using Theorem
(2.1), we get that the proper action is equivalent to the property Adg h ∩ l = {0} for all
g ∈ G, (or equivalently Adg l ∩ h = {0} for all g ∈ G). If z ⊂ h, it is then clear that
Adg h = h and that the proper action is equivalent to l∩h = {0}. Assume that the action
is proper and z 6⊂ h, so obviously h∩ l = {0}. Towards the equality z∩ (h⊕ l) = l∩ z, it is
sufficient to show that z∩ (l⊕ h) ⊂ (z∩ l). Let x ∈ z∩ (l⊕ h). There exist then l ∈ l and
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h ∈ h such that x = l + h. We have to show that x = l. Suppose that l /∈ z. Then there
exist X ∈ g such that [X, l] = −x as the center is one dimensional. As such, the non
trivial element Adexp X l = l − x = −h belongs to the intersection Adexp X l ∩ h, which is
impossible. This leads to the fact that x− l is a central element and belongs to h which
also means that it is trivial. Conversely, let t ∈ Adg l ∩ h. We have t = l + x with x ∈ z
and l ∈ l. Then x ∈ z ∩ (l⊕ h) which means that x ∈ l and finally t ∈ h ∩ l = {0}. This
consideration shows conclusively that exp l acts properly on G/H. ¤

3.2. The deformation and the moduli spaces when H contains the center. We
assume in this section that the subalgebra h of g contains the center z = [g, g] and that
l is a subalgebra of g such that l ∩ h = {0}. Then l is an abelian subalgebra and if
L(l, g) designates the vector space of the linear maps from l to g, the set Hom(l, g) of
Lie algebras homomorphisms can be regarded as the set

Hom(l, g) := {ψ ∈ L(l, g), [ψ(x), ψ(y)] = 0 for all x, y ∈ l}.
We fix by the way a symplectic basis Bh of g adapted to h as provided by proposition
(3.1). We identify g to R2n+1, h to a subspace of R2n+1 and L(l, g) to a subset of real
matrices M2n+1,k(R), where k = dim l. Let as usual s = dim h. For any α ∈ Is(n, k), we
consider the set

V ′
α :=

{
M =

(
0
A

)
, A ∈ M2n,k(R), Mα = Ik and tMJbM = 0

}
⊂ Vα,(10)

where Jb is the matrix of b in Bh. The following theorem provides a description of the
deformation and the moduli space in this context.

Theorem 3.3. Let G be the Heisenberg Lie group of dimension 2n + 1, H a connected
Lie subgroup of dimension s which contains the center of G and Γ a rank k discontinuous
subgroup for G/H. Then

T (Γ, G,H) =
⋃

α∈Is(2n+1,k)

Tα and M(Γ, G, H) =
⋃

α∈Is(2n+1,k)

Mα,

where for every α ∈ Is(2n + 1, k), the set Tα is an open subset of T (Γ, G,H) homeomor-
phic to the product GLk(R)×V

′
α and Mα is an open subset of M(Γ, G,H) homeomorphic

to the product GLk(R)/GLk(Z)× V ′
α.

Proof. We will make use of Theorem (2.3) as h contains the first derivative group of
g. As it stands there, we just have to prove that the quotient space Vα/G is home-
omorphic to V ′

α for any α ∈ Is(2n + 1, k). We fix first of all a symplectic basis
Bh = (Z, X1, ..., Xn, Y1, ..., Yn) adapted to h. Take any α ∈ Is(2n + 1, k) and M ∈ Vα,
we can then write

M =

(
a
A

)
with a = (a1, . . . , ak) ∈ Rk and A ∈ M2n,k(R).
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Note that for X ∈ g we have

Adexp X =




1 b(X, X1) · · · b(X, Yn)
.
.
.
0 (I2n)




.

Then the action of Adexp X on M affects only the first line. More precisely, if we identify
the columns ci of A to a vector of g, then the first line of the product is

(a1 + b(X, c1), . . . , ak + b(X, ck)).

The following result which has been proved in [1], will be used.

Lemma 3.4. (Lemma (4.3), [1]) Let WM denote the subspace of g generated by the
columns of M . If M ∈ Vα for α ∈ Is(2n + 1, k) then WM ∩ h = {0}.

It turns out as the center z is not contained in WM that the map g → W ∗
M , x 7→ b(x, .)

is surjective and there exists therefore X ∈ g such that

b(X, c1) = −a1, . . . , b(X, ck) = −ak.

It follows then that any M in Vα is G-equivalent to the matrix obtained from M by
vanishing the first line of M . Conversely if the first lines of M and M ′ are zero, then
M = Adexp X M ′ only if M = M ′.

Let π be the continuous map from Vα to V ′
α which sends the matrix M =

(
a
A

)
to the

matrix π(M) =

(
0
A

)
, where we consider the trace topology on V ′

α. Then the canonical

surjection p : Vα → Vα/G factors through π to a continuous bijection f between V ′
α and

Vα/G defined by p = f ◦ π. Now G acts continuously on Vα, then p is open and we can
easily see that f−1 is continuous. This achieves the proof of the Theorem.

¤

3.3. The deformation and the moduli spaces when H does not contain the
center. We now tackle the case where the center of g does not meet h. In such a
situation, H is an abelian subgroup of G. We still need some other results. The following
lemma describes the structure of the parameter space in this case.

Lemma 3.5. Let G be the Heisenberg Lie group, H a connected subgroup which does not
contain the center, Γ a rank k abelian discontinuous subgroup for G/H and L = exp(l)
its syndetic hull in G. Then the parameters space R(Γ, G, H) is the disjoint union of the
two G−invariant sets

R1(Γ, G, H) =



ψ ∈ Hom(l, g)

∣∣∣∣∣∣

dim ψ(l) = k,
h ∩ ψ(l) = {0}
and z ⊂ ψ(l)




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and

R2(Γ, G, H) =

{
ψ ∈ Hom(l, g)

∣∣∣∣
dim ψ(l) = k and
(h⊕ z) ∩ ψ(l) = {0}

}
.

Proof. From Theorem (2.2) and lemma (3.2), we can easily see that R(Γ, G, H) is the
union of the following sets

R1(Γ, G, H) =





ψ ∈ Hom(l, g)

∣∣∣∣∣∣∣∣

dim ψ(l) = k,
h ∩ ψ(l) = {0},
z ∩ (h⊕ ψ(l)) = ψ(l) ∩ z
and z ⊂ ψ(l)





and

R2(Γ, G, H) =





ψ ∈ Hom(l, g)

∣∣∣∣∣∣∣∣

dim ψ(l) = k,
h ∩ ψ(l) = {0},
z ∩ (h⊕ ψ(l)) = ψ(l) ∩ z
and z 6⊂ ψ(l)





=



ψ ∈ Hom(l, g)

∣∣∣∣∣∣

dim ψ(l) = k,
h ∩ ψ(l) = {0},
z ∩ (h⊕ ψ(l)) = {0}



 .

To conclude, note that the third condition z ∩ (h ⊕ ψ(l)) = ψ(l) ∩ z involved in the set
R1(Γ, G, H) is trivial as z ⊂ ψ(l). Likewise, it is easily seen that z ∩ (h ⊕ ψ(l)) = {0}
if and only if (z ⊕ h) ∩ ψ(l) = {0} and then the three last set equations of R2(Γ, G, H)
together are equivalent to (h ⊕ z) ∩ ψ(l) = {0}. On the other hand, for any g ∈ G,
z ⊂ Adg−1 ◦ψ(l) if and only if z ⊂ ψ(l), which proves the G−invariance of R1(Γ, G, H).
Furthermore, for any ψ ∈ R2(Γ, G, H) and any g ∈ G, one has

(z⊕ h) ∩ Adg−1(ψ(l)) = (z⊕ h) ∩ (ψ(l)) = {0},
which shows the G− invariance of the set R2(Γ, G,H). ¤

We now fix a basis Bh = {Z, X1 . . . , Xn, Y1, . . . , Yn} of g adapted to h. We consider
the decomposition

g = z⊕ h⊕ h′ ⊕ k⊕ k′

where,
h = 〈X1, . . . , Xs〉, h′ = 〈Y1, . . . , Ys〉,

k = 〈Xs+1, . . . , Xn〉 and k′ = 〈Ys+1, . . . , Yn〉.
We identify as previously g to R2n+1 = R⊕Rs⊕Rs⊕Rn−s⊕Rn−s and Hom(l, g) to the set
of matrices given in (8), with l = 1 and b1 = b. Then with respect to this decomposition,
any element of g

x = a0Z +
n∑

i=1

aiXi +
n∑

i=1

biYi,

is identified to the column vector
t(a0 a1 · · · as b1 · · · bs as+1 · · · an bs+1 · · · bn)
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and every homomorphism ψ ∈ Hom(l, g), can be written as a matrix

M =




A0

A1

B1

A2

B2




where A0 ∈ M1,k(R), A1, B1 ∈ Ms,k(R) and A2, B2 ∈ Mn−s,k(R). Then from (8) and the
lemma (3.5), we get,

R1(Γ, G, H) =





M ∈ M2n+1,k(R)

∣∣∣∣∣∣∣∣

dim M(Rk) = k,
h ∩M(Rk) = {0},
z ⊂ M(Rk) and
tMJbM = 0





.

Up to this step, we consider the set

I1
s (2n + 1, k) = {(i1, . . . , ik), i1 = 1 and i2 > s + 1}.(11)

Now, we can state the following:

Lemma 3.6. The set R1(Γ, G, H) is open in Hom(l, g) and the sets η−1
(
ηα(Vα)

)
, α ∈

I1
s (2n + 1, k) constitutes an open G−invariant covering of R1(Γ, G, H).

Proof. The condition z ⊂ M(Rk) equivalent to the existence of a matrix

M ′ =




1 0
0 A′

1

0 B′
1

0 A′
2

0 B′
2




,

with A′
1, B

′
1 ∈ Ms,k−1(R), A′

2, B
′
2 ∈ Mn−s,k−1(R) and M(Rk) = M ′(Rk). The conditions

M(Rk) ∩ h = {0} and dim M(Rk) = k are equivalent to

rank




B′
1

A′
2

B′
2


 = k − 1,

which is also equivalent to the existence of α ∈ I1
s (2n + 1, k) such that M(Rk) ∈ ηα(Uα).

Now, if M(Rk) ∈ ηα(Uα) then tMJbM = 0 if and only if

t{η−1
α (M(Rk))}Jb{η−1

α (M(Rk))} = 0,

or equivalently η−1
α (M(Rk)) ∈ Vα. Then M ∈ R1(Γ, G,H) if and only if

M(Rk) ∈
⋃

α∈I1
s (2n+1,k)

ηα(Vα).
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This means that

R1(Γ, G, H) =
⋃

α∈I1
s (2n+1,k)

η−1
(
ηα(Vα)

)
.

Furthermore,

η−1
(
ηα(Vα)

)
=



M ∈ M2n+1,k(R)

∣∣∣∣∣∣

(detMα) 6= 0

and tMJbM = 0



 ,

which is an open set of V and then R1(Γ, G, H) is also open in Hom(l, g). Let X ∈ g
and M ∈ η−1

(
ηα(Vα)

)
, then there exist A ∈ GLk(R) and M ′ ∈ M2n+1,k(R) such that

Adexp X =




1 b(X, X1) · · · b(X,Yn)
.
.
.
0 (I2n)




and M = M ′A, with

M ′ =




1 0
0 A′

1

0 B′
1

0 A′
2

0 B′
2




.

Therefore,

Adexp X M = M ′




1 b(X, c2) · · · b(X, cn)
.
.
.
0 (Ik−1)




A,

where c2, . . . , ck are the k − 1 last columns vectors of M ′ and we can see that η(M) =
η(Adexp X M), which proves the G−invariance of η−1

(
ηα(Vα)

)
for any α ∈ I1

s (2n + 1, k).
¤

Now we are ready to state our main result in this section concerning the deformation
and the moduli space in the case where h does not meet the center of g. We have the
following:

Theorem 3.7. Let G be the Heisenberg Lie group, H a connected subgroup which does not
meet the center of G, Γ a rank k abelian discontinuous subgroup for G/H and L = exp(l)
its syndetic hull in G. Then

T (Γ, G, H) =
⋃

α∈Is+1(2n+1,k)

Tα

⋃

α∈I1
s (2n+1,k)

Tα
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and

M(Γ, G, H) =
⋃

α∈Is+1(2n+1,k)

Mα

⋃

α∈I1
s (2n+1,k)

Mα,

where:
1) For every α ∈ Is+1(2n + 1, k), the set Tα is open in T (Γ, G, H) and homeomorphic

to the product GLk(R)× V ′
α and the set Mα is open in M(Γ, G, H) and homeomorphic

to GLk(Z)\GLk(R)× V ′
α.

2) For every α ∈ I1
s (2n + 1, k), the set Tα is open in T (Γ, G, H) and is homeomorphic

to the product Ok×Rk×Nk×Vα, Nk designates here the set of upper triangular unipotent
matrices. Likewise, the set Mα is open in M(Γ, G, H) and homeomorphic to the product
(GLk(Z)\GLk(R)/Rk−1)× Vα.

Proof. We use Lemma (3.5) to write the following decomposition of the deformation
space

R1(Γ, G, H)/G ∪R2(Γ, G, H)/G.

The set R2(Γ, G, H) can be identified to the parameter space R(Γ, G, K), where K =
Z(G)H and Z(G) is the center of G. Then by Theorem (3.3), we get the following
description of the quotient set

R2(Γ, G, H)/G =
⋃

α∈Is+1(2n+1,k)

Tα

where for any α ∈ Is+1(2n + 1, k), the set Tα is open in T (Γ, G, H) and homeomorphic
to the product GLk(R)×V ′

α. On the other hand, thanks to Lemma (3.6), one can write

R1(Γ, G, H)/G =
⋃

α∈I1
s (2n+1,k)

η−1
(
ηα(Vα)

)
/G

as union of open sets. Let then Tα = η−1
(
ηα(Vα)

)
/G. Recall that the map χα is a

homeomorphism between GLk(R)×ηα(Vα) and η−1
(
ηα(Vα)

)
. Consider the G−action on

GLk(R)× ηα(Vα) given by

(A, W ) · g = (χ−1
α,W Adg−1 χα,W A,W ).

Then the map χα is G−equivariant. Indeed,

χα((A,W ) · g) = χα(χ−1
α,W ◦ Adg−1 ◦χα,W ◦ A,W )

= χα,W ◦ (χ−1
α,W ◦ Adg−1 ◦χα,W ◦ A)

= Adg−1 ◦χα(A,W )
= χα(A,W ) · g.
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For every α ∈ I1
s (2n + 1, k) and W ∈ ηα(Vα), we can easily see that there is A1, B1 ∈

Ms,k(R), A2, B2 ∈ Mn−s,k(R) such that

η−1
α (W ) =




1 0
0 A1

0 B1

0 A2

0 B2




.

Then, for g−1 = exp X we have

χ−1
α,W Adg−1 χα,W A =

(
Adg−1 η−1

α (W )A
)

α
=




1 b(X, c2) · · · b(X, cn)
.
.
.
0 (Ik−1)




A,

where c2, . . . , ck are the k − 1 last columns of η−1
α (W ). We now consider the free action

of Rk−1 on GLk(R) defined by

(x1, . . . , xk−1) · A =




1 x1 · · · xk−1

.

.

.
0 (Ik−1)




A.

The subspace W ′ of W generated by c2, . . . , ck is an abelian subalgebra of dimension k−1
which does not meet the center, which means that the map g → W ′∗,X 7→ b(X, ·)|W ′ is
surjective. It follows therefore that for any (x1, . . . , xk−1) ∈ Rk−1, there is X ∈ g such
that b(X, ci) = xi−1 for all i = 2, . . . , k. Therefore the quotient map

π : GLk(R)× ηα(Vα) −→ (
GLk(R)× ηα(Vα)

)
/G,

factors through the canonical surjection

p : GLk(R)× ηα(Vα) −→ (
GLk(R)/Rk−1

)× ηα(Vα)

to give a continuous surjective map

f :
(
GLk(R)/Rk−1

)× ηα(Vα) −→ (
GLk(R)× ηα(Vα)

)
/G

defined by π = f ◦ p and we can easily see that f is injective. Now, G acts continuously
on GLk(R) × ηα(Vα), which entails that π is open and that f is a homeomorphism.
The following Lemma enables us to achieve the proof of the assertion concerning the
deformation space.

Lemma 3.8. Fix a positive integer p and regard Rp as a subgroup of GLp+1(R) through
the writing

Rp :=

{(
1 tx
0 Ip

)
: x ∈ Rp

}
.
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Then,

(12) GLp+1(R)/Rp ' Op+1 × Rp+1 ×Np,

where Np denotes the totality of upper triangular unipotent matrices.

Proof. Using the Iwasawa decomposition, we have

GLp+1(R) ' Op+1 × Ap+1 ×Np+1,

where Ap+1(' Rp+1) denotes the totality of diagonal matrices with positive entries. Thus
we obtain (12) because of the decomposition Np+1 ' Np ×Rp. ¤

As for the moduli space, recall that Aut(Γ) = GLk(Z) and if we consider the ac-
tion of Aut(Γ) on GLk(R) × ηα(Vα) given by T · (A,W ) = (AT−1,W ), then χα is
Aut(Γ)−equivariant and the result follows immediately.

¤
The following result provides another variant of description of the deformation space

in our context.

Theorem 3.9. Let G be the Heisenberg Lie group, H a connected subgroup which does not
meet the center of G, Γ a rank k abelian discontinuous subgroup for G/H and L = exp(l)
its syndetic hull in G. Then

T (Γ, G, H) =
⋃

α∈Is+1(2n+1,k)

Tα

⋃

α∈I1
s (2n+1,k)

k⋃
j=1

Tα,j

where for every α ∈ Is+1(2n + 1, k), the set Tα is open in T (Γ, G, H) and homeomorphic
to the product GLk(R)× V ′

α. Furthermore, for any α ∈ I1
s (2n + 1, k) and j ∈ {1, ..., k},

the set Tα,j is open in T (Γ, G, H) and is homeomorphic to the multiple direct product
R∗ × Rk−1 ×GLk−1(R)× Vα.

Proof. In light of Theorem (3.7), we only need to show that

GLk(R)/Rk−1 =
k⋃

j=1

Ui,

where for any j = 1, ..., k, Uj is homeomorphic to R∗ × Rk−1 × GLk−1(R). Indeed, let
A ∈ GLk(R) and denote by Ai the matrix obtained from A by deleting the first line and
the ith column of A. Then the union of the open sets

Ui = {A ∈ GLk(R), det Ai 6= 0}, 1 ≤ i ≤ k

is equal to GLk(R) and each of them is Rk−1−stable. Therefore

GLk(R)/Rk−1 =
k⋃

i=1

Ui/Rk−1.

The following Lemma enables us to achieve the proof.
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Lemma 3.10. For 1 ≤ i ≤ k we have Ui/Rk−1 ∼= R∗ × Rk−1 ×GLk−1(R).

Proof. Let A ∈ Ui, write

A =




a11 · · · a1k

(a1) · · · (ak)


 ,

where a11, . . . , a1k ∈ R and a1, . . . , ak ∈ Rk−1. So for x ∈ Rk−1 we have,

x · A =




a11 + 〈x, a1〉 · · · a1k + 〈x, ak〉

(a1) · · · (ak)


 ,

where 〈., .〉 designates the natural scalar product on Rk−1. For x0 = −biA
−1
i , where

bi ∈ Rk−1 obtained from (a11, . . . , a1k) by eliminating of the i− th coordinate, we have

a1j + 〈x0, aj〉 = 0, for all j 6= i.

This means that A is equivalent (modulo Rk−1) to a certain matrix in the set

Ki :=





A =




a11 · · · a1k

(a1) · · · (ak)


 ∈ GLk(R), a1j = 0 for all j 6= i





.

Note that

Ki
∼= R∗ × Rk−1 ×GLk−1(R).

Let π : Ui −→ Ui/Rk−1 be the canonical surjection and p : Ui −→ Ki the continuous
surjection defined by

p(A) =




p1(A) · · · pk(A)

(a1) · · · (ak)


 ,

where pj(A) = 0, if j 6= i and pi(A) = a1i − 〈biA
−1
i , ai〉 6= 0. Then clearly the map

f : Ki −→ Ui/Rk−1 defined by f
(
p(A)

)
= π(A) is surjective. For the injectivity, let

A, A′ ∈ Ki such that f(A) = f(A′), which means that there is x0 ∈ Rk−1 such that
x0 ·A = A′. But x ·A ∈ Ki only if x = 0. Thus x0 = 0 and A = A′. Using the continuity
of π and p with the fact that π is open, we obtain the bi-continuity of f . This achieves
the proof of the lemma and also of the Theorem. ¤
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3.4. Case of compact Clifford-Klein forms. We finally describe the deformation
and the moduli space for compact Clifford-Klein forms. We have the following:

Theorem 3.11. Let G be the Heisenberg Lie group of dimension 2n + 1, H a connected
Lie subgroup of dimension s and Γ a rank k discontinuous subgroup for G/H. Assume
in addition that the Clifford-Klein form Γ\G/H is compact. Then

1) If H contains the center of G, then k < s and

T (Γ, G, H) = GLk(R)×Mp,q(R)2 × Sym(Rq)× Sp(p,R)/Sp(p− r,R)

and equivalently

M(Γ, G,H) = GLk(R)/GLk(Z)×Mp,q(R)2 × Sym(Rq)× Sp(p,R)/Sp(p− r,R)

where for h = log H, q + 1 = dim(ker b|h), 2p + q + 1 = dim h and p + q + r = n.
2) If H does not contain the center of G then,

T (Γ, G, H) = On+1 × Rn+1 ×Nn × Sym(Rn)

and

M(Γ, G, H) = (GLn+1(Z)\GLn+1(R)/Rn)× Sym(Rn).

Proof. Note first of all that if Γ is a discontinuous group for G/H and H contains the
center of G, then Γ is abelian and so is its syndetic hull L. By proposition (3.1), we get
k < n + 1 where k designates the rank of Γ. If k = 2n + 1− s and k > s then obviously
k > n, which means that either Γ is not a discontinuous group for G/H or Γ is not
abelian. So, if k > s and 2n + 1− s = k then the parameters space is empty.
Assume now that k < s and 2n + 1− s = k then the set Is(2n + 1, k) is reduced to the
element α0 = (s + 1, . . . , 2n + 1). Using Theorem (3.3), we get:

T (Γ, G, H) = GLk(R)× V ′
α0

.

To conclude we just have to prove that

V ′
α0

= Mp,q(R)2 × Sym(Rq)× Sp(p,R)/Sp(p− r,R).

Having fixed an adapted basis Bh = {Z,X1 . . . , Xn, Y1, . . . , Yn} of g adapted to h, we
consider the vector subspaces,

V
′
1 = 〈X1, . . . , Xp〉, V

′′
1 = 〈Y1, . . . , Yp〉,

V0 = 〈Xp+1, . . . , Xp+q〉, N0 = 〈Yp+1, . . . , Yp+q〉,
N

′
1 = 〈Xp+q+1, . . . , Xn〉 and N

′′
1 = 〈Yp+q+1, . . . , Yn〉.

So we have the following decompositions

g = z⊕ V
′
1 ⊕ V

′′
1 ⊕ V0 ⊕N0 ⊕N

′
1 ⊕N

′′
1 and h = z⊕ V

′
1 ⊕ V

′′
1 ⊕ V0.(13)

Any matrix M ∈ V ′
α can be written as
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M =




0 0 0
A1 A2 A3

B1 B2 B3

C1 C2 C3

I 0 0
0 I 0
0 0 I




z

V
′
1

V
′′
1

V0

N0

N
′
1

N
′′
1

where A1, B1 ∈ Mp,q(R), C1 ∈ Mq,q(R), A2, A3, B2, B3 ∈ Mp,r(R) and C2, C3 ∈ Mq,r(R),
for r = n− p− q. The matrix of b is

Jb =




0 0 0 0 0 0 0
0 0 −I 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 −I 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 −I
0 0 0 0 0 I 0




and the condition tMJbM = 0 is equivalent to the following system:


tB1A1 − tA1B1 + C1 − tC1
tB1A2 − tA1B2 + C2

tB1A3 − tA1B3 + C3
tB2A1 − tA2B1 − tC2

tB2A2 − tA2B2
tB2A3 − tA2B3 − I

tB3A1 − tA3B1 − tC3
tB3A2 − tA3B2 + I tB3A3 − tA3B3


 = 0.

This is in turn equivalent to

C2 = tA1B2 − tB1A2, C3 = tA1B3 − tB1A3, C1 =
1

2
(tA1B1 − tB1A1) + D

and (
tB2A2 − tA2B2

tB2A3 − tA2B3
tB3A2 − tA3B2

tB3A3 − tA3B3

)
=

(
0 I
−I 0

)
,(14)

where D ∈ Sym(Rq) and A1, B1 ∈ Mp,q(R). Let

Y =

(
B2 B3

A2 A3

)
∈ M2p,2r(R)

and

Jm =

(
0 Im

−Im 0

)
∈ M2m,2m(R).

Then, the condition (14) can be written as tY JpY = Jr and for

U = {Y ∈ M2p,2r(R), tY JpY = Jr}
we easily see that

V ′
α
∼= Mp,q(R)2 × Sym(Rq)× U.

To conclude, we finally prove the following lemma:
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Lemma 3.12. U ∼= Sp(p,R)/Sp(p− r,R).

Proof. Note first that the symplectic group Sp(p,R) acts on U by multiplication on the
left and its action is transitive. The matrix

Y =




Ir 0
0 0
0 Ir

0 0




belongs to U and with a direct verification, we get

Stab(Y ) =





P =




Ir 0 0 0
0 A 0 B
0 0 Ir 0
0 C 0 D


 ,

(
A B
C D

)
∈ Sp(p− r)




∼= Sp(p− r).

¤
We pay attention finally to the case where H does not meet Z(G), the center of G. As

we are dealing with compact Clifford-Klein forms, we are obviously submitted to write
that s + k = 2n + 1, which entails that Is+1(2n + 1, k) is empty and I1

s (2n + 1, k) is
merely reduced to the single element α0 = (1, s + 2, . . . , 2n + 1). As it stands here, the
subgroups H and Γ are abelian, and we get by proposition (3.1) that dim h = n and
rank Γ = n + 1. Then Theorem (3.7) enables us to write that,

T (Γ, G,H) = GLn+1(R)/Rn × Vα0 .

Now every matrix M in Vα0 can be written as

M =




1 0
0 A
0 In




for some A ∈ Mn(R). The relation tMJbM = 0 is then equivalent to tA−A = 0 and the
result follows from Lemma (3.8).

¤
A straight consequence of the last theorem, is the following:

Corollary 3.13. Let G be the Heisenberg Lie group, H a connected Lie subgroup of
G and Γ an abelian discontinuous subgroup of G for G/H. Assume in addition that
the Clifford-Klein form Γ\G/H is compact. Then the deformation space T (Γ, G,H) is
endowed with a structure of a differential manifold.

3.5. The rigidity, local rigidity and stability. We study now the topological fea-
tures of the deformation space in our setting, namely the rigidity, local rigidity and the
topological stability. We point out here that we will get as in [10] an example for which
the stability holds globally but the rigidity fails to be true. More precisely, we prove the
following:
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Theorem 3.14. Let G be the Heisenberg Lie group, H a connected Lie subgroup of G
and Γ an abelian discontinuous subgroup of G for G/H. Then R(Γ, G, H) is an open set
in Hom(Γ, G). That is, every element of R(Γ, G, H) is stable. In addition there is no
isolated point in the deformation space. Actually the rigidity, the local rigidity properties
fail to hold for every element in R(Γ, G, H).

Proof. Under the assumption that H contains the center of G which coincides with the
first derivative group [G,G], we get thanks to Theorem (2.4) that the parameter space
R(Γ, G, H) is open in Hom(l, g) and there is no open isolated point inside the deformation
space T (Γ, G, H). We now remove the assumption that H contains the center of G. In
this context, by lemma (3.5) we can see that the parameter space

R(Γ, G, H) = R1(Γ, G, H) ∪R2(Γ, G, H).

By lemma (3.6) we see that R1(Γ, G, H) is an open set in Hom(l, g). Furthermore
R2(Γ, G, H) = R(Γ, G, K) where K = HZ(G), which also open in Hom(l, g). Let [ψ]
be an open point in T (Γ, G, H). By Theorem (3.7) there exists α in Is(2n + 1, k) or
α ∈ I1

s (2n+1, k) such that [ψ] ∈ Tα. In both cases, Tα is homeomorphic to a topological
space without isolated points. These arguments conclusively lead to the fact that the
rigidity fails to hold globally as well. ¤

4. Examples

To end the paper, we present in this section some enriching examples for which we carry
out explicit computations of some chosen layers Tα and Mα involved in the description
of the deformation and moduli space as we did in the case of compact Clifford-Klein
forms where only one single strate occurs. We precise that our computations take into
account the precise basis of g adapted to h and utterly rely on the position of h inside
g. All the matrices considered in the following examples are written in a basis Bh of g
adapted to h.

Example 1. We Assume in this first example that h does not contain the center of g
and we write accordingly to the notations of proposition (3.1) that dim h = s. Take for
instance k = s + 1 and α = (1, s + 2, . . . , 2s + 1). Then any M ∈ Vα can be written as

M =




1 0
0 A
0 Is

0 B
0 C



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where A ∈ Ms(R), B, C ∈ Mn−s,s(R). The matrix Jb of the bilinear form b is then given
by

Jb =




0 0 0 0 0
0 0 −Is 0 0
0 Is 0 0 0
0 0 0 0 −In−s

0 0 0 In−s 0




.

By a routine computation, we can easily see that the condition tMJbM = 0 gives rise to
the following equation

−tA + A− tBC + tCB = 0.

So A = −1
2
(−tBC + tCB) + D, for some D ∈ Sym(Rs) and we finally get that

Tα = GLk(R)/Rk−1 ×M2
n−s,s(R)× Sym(Rs)

' Ok × Rk ×Nk ×M2
n−s,s(R)× Sym(Rs)

and

Mα = GLk(Z)\GLk(R)/Rk−1 ×M2
n−s,s(R)× Sym(Rs).

We assume henceforth that h contains the center of g and therefore dim h = 1+2p+ q
according to the notations of proposition (3.1).

Example 2. Take for instance p + q + k = n and α = (1 + 2p + 2q + k + 1, . . . , 2n + 1).
Let M ∈ V ′

α. Then

M =




0
A1

A2

A3

A4

A5

Ik




,

where A1, A2 ∈ Mp,k(R), A3, A4 ∈ Mq,k(R) and A5 ∈ Mk(R). The matrix of the bilinear
form b is

Jb =




0 0 0 0 0 0 0
0 0 −Ip 0 0 0 0
0 Ip 0 0 0 0 0
0 0 0 0 −Iq 0 0
0 0 0 Iq 0 0 0
0 0 0 0 0 0 −Ik

0 0 0 0 0 Ik 0




.

So the condition tMJbM = 0 is equivalent to the equation

−tA1A2 + tA2A1 − tA3A4 + tA4A3 + A5 − tA5 = 0.
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Therefore, for A1, A2 ∈ Mp,k(R), A3, A4 ∈ Mq,k(R) we can take

A5 = −1

2
(−At

1A2 + tA2A1 − tA3A4 + tA4A3) + D, with D ∈ Sym(Rk).

and then

Tα
∼= GLk(R)×Mp,k(R)2 ×Mq,k(R)2 × Sym(Rk).

Example 3. We still take p+q+k = n and consider α = (2p+2q+2, . . . , 2p+2q+k+1)
and let M ∈ V ′

α. Then

M =




0
A1

A2

A3

A4

Ik

A5




,

where A1, A2 ∈ Mp,k(R), A3, A4 ∈ Mq,k(R) and A5 ∈ Mk(R). Then the same calculation
as in the first example gives

Tα
∼= GLk(R)×Mp,k(R)2 ×Mq,k(R)2 × Sym(Rk).

Example 4. Assume now that k = q and take α = (2p + q + 2, . . . , 2p + 2q + 1) and let
M ∈ V ′

α. Then

M =




0
A1

A2

A3

Iq

A5

A6




,

where A1, A2 ∈ Mp,q(R), A3 ∈ Mq(R) and A5, A6 ∈ Mr,q(R) with r = n− p− q. So the
condition tMJbM = 0 is equivalent to the equation

−tA1A2 + tA2A1 − tA3 + A3 − tA5A6 + tA6A5 = 0.

Then as above we have

A3 = −1

2
(−tA1A2 + tA2A1 − tA5A6 + tA6A5) + D, with D ∈ Sym(Rq).

We get then that

Tα
∼= GLq(R)×Mp,q(R)2 ×Mr,q(R)2 × Sym(Rq).

Example 5. Assume finally that k = q + r where p + q + r = n and take α =
(2p + q + 2, . . . , 2p + 2q + r + 1). For M ∈ V ′

α, we have
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M =




0 0
A1 B1

A2 B2

A3 B3

Iq 0
0 Ir

A4 B4




,

where A1, A2 ∈ Mp,q(R), B1, B2 ∈ Mp,r(R), A3 ∈ Mq(R), B3 ∈ Mq,r(R), A4 ∈ Mr,q(R)
and B4 ∈ Mr(R). Then

tMJbM =

( −tA1A2 + tA2A1 − tA3 + A3 −tA1B2 + tA2B1 + B3 + tA4

−tB1A2 + tB2A1 − tB3 − A4 −tB1B2 + tB2B1 + tB4 −B4

)
.

Then the condition tMJbM = 0 is equivalent to

A3 = −1
2
(−tA1A2 + tA2A1) + D, D ∈ Sym(Rq)

B4 = −1
2
(tB1B2 − tB2B1) + D′, D′ ∈ Sym(Rr)
−A4 = tB3 + tB1A2 − tB2A1.

We obtain therefore that:

Tα = GLk(R)×Mp,q(R)2 ×Mp,r(R)2 ×Mq,r(R)× Sym(Rq)× Sym(Rr).
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