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THE KASHIWARA-VERGNE CONJECTURE AND DRINFELD’S

ASSOCIATORS

ANTON ALEKSEEV AND CHARLES TOROSSIAN

Abstract. The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-
Hausdorff series put forward in 1978, in [13]. It has been settled in the positive

by E. Meinrenken and the first author in 2006, in [2]. In this paper, we study
the uniqueness issue for the KV problem. To this end, we introduce a family of

infinite dimensional groups KVn, and an extension dKV2 of the group KV2. We

show that the group dKV2 contains the Grothendieck-Teichmüller group GRT
as a subgroup, and that it acts freely and transitively on the set of solutions of

the KV problem Sol(dKV). Furthermore, we prove that Sol(dKV) is isomorphic
to a direct product of a line K (K being a field of characteristic zero) and the
set of solutions of the pentagon equation with values in the group KV3. The
latter contains the set of Drinfeld’s associators as a subset. As a by-product of
our construction, we obtain a new proof of the Kashiwara-Vergne conjecture
based on the Drinfeld’s theorem on existence of associators.

1. Introduction

The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-Hausdorff
series which was put forward in [13]. The KV conjecture has many implications in
Lie theory and harmonic analysis. Let g be a finite dimensional Lie algebra over
a field of characteristic zero. The KV conjecture implies the Duflo theorem [8] on
the isomorphism between the center of the universal enveloping algebra Ug and
the ring of invariant polynomials (Sg)g. Another corollary of the KV conjecture
is a ring isomorphism in cohomology H(g, Ug) ∼= H(g, Sg) (proved by Shoikhet
[20] and by Pevzner-Torossian [17]) for the enveloping and symmetric algebras
viewed as g-modules with respect to the adjoint action. For K = R, another
application of the KV conjecture is the extension of the Duflo theorem to germs of
invariant distributions on the Lie algebra g and on the corresponding Lie group G
(see Proposition 4.1 and Proposition 4.2 in [13] proved in [4] and [5]).

The KV conjecture was established for solvable Lie algebras by Kashiwara and
Vergne in [13], for g = sl(2,R) by Rouvière in [19], and for quadratic Lie algebras
(that is, Lie algebras equipped with an invariant nondegenerate symmetric bilinear
form, e.g. the Killing form for g semisimple) by Vergne [22]. The general case has
been settled by Meinrenken and the first author in [2] based on the previous work of
the second author [21] and on the Kontsevich deformation quantization theory [14].

In this paper, we establish a relation between the KV conjecture and the theory
of Drinfeld’s associators developed in [7]. To this end, we introduce a family of

infinite dimensional groups KVn, n = 2, 3, . . . , and an extension K̂V2 of the group

KV2. We show that the set of solutions of the KV conjecture Sol(K̂V) carries a free

and transitive action of the group K̂V2 which contains the Drinfeld’s Grothendieck-

Teichmüller group GRT as a subgroup. Furthermore, the set Sol(K̂V) is isomorphic
1
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to a direct product of a line K and the set of solutions of the pentagon equation with
values in the group KV3. We make use of an involution τ acting on solutions of the

KV conjecture to select symmetric solutions of the KV problem, Solτ (K̂V). The

set Solτ (K̂V) is isomorphic to a direct product of a line and the set of associators
(joint solutions of the pentagon, hexagon and inversion equations of [7]) with values
in the group KV3. The latter contains the set of Drinfeld’s associators as a subset.

In summary, we solve the uniqueness issue for the KV problem in terms of
associators with values in the group KV3. As a by-product, we obtain a new proof of
the KV conjecture. Indeed, by Drinfeld’s theorem, the set of Drinfeld’s associators
in non empty. Hence, so is the set of associators with values in the group KV3,

and the set of symmetric solutions of the KV conjecture Solτ (K̂V). This new proof
is based on the theory of associators rather than on the deformation quantization
machine.

An outstanding question which we were not able to resolve is whether or not

the symmetry group of the KV problem, K̂V2, is isomorphic to a direct product of
a line and the Grothendieck-Teichmüller group GRT. A numerical experiment of
L. Albert and the second author shows that the corresponding graded Lie algebras

coincide up to degree 16! If correct, the isomorphism K̂V2
∼= K×GRT would imply

that all solutions of the KV conjecture are symmetric, and that all associators with
values in the group KV3 are Drinfeld’s associators.

Below we explain raison d’être of the link between the Kashiwara-Vergne and
associator theories. One possible formulation of the KV problem is as follows:
find an automorphism F of the (degree completion of the) free Lie algebra with
generators x and y such that

(1) F : x+ y 7→ ch(x, y),

where ch(x, y) = x+ y + 1
2 [x, y] + . . . is the Campbell-Hausdorff series. The auto-

morphism F should satisfy several other properties which we omit here. Consider
a free Lie algebra with three generators x, y, z and define the automorphism F 1,2

which is equal to F when acting on generators x and y and which preserves the
generator z. Similarly, define F 2,3 acting on generators y and z and preserving x.
Furthermore, define F 12,3 acting on x+y and z, and F 1,23 acting on x and y+z (for
a precise definition see Section 3). The main property of the Campbell-Hausdorff
series is the associativity,

ch(x, ch(y, z)) = ch(ch(x, y), z).

We use this property to establish the following formula:

F 1,2F 12,3(x+ y + z) = F 1,2(ch(x+ y, z))
= ch(ch(x, y), z)
= ch(x, ch(y, z))
= F 2,3(ch(x, y + z))
= F 2,3F 1,23(x+ y + z).

Hence, the combination

(2) Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23

has the property Φ(x+y+z) = x+y+z which is one of the defining properties of the
group KV3. Furthermore, as an easy consequence of (1) and (2), the automorphism
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Φ satisfies the pentagon equation

(3) Φ1,2,3Φ1,23,4Φ2,3,4 = Φ12,3,4Φ1,2,34.

Equation (3) is an algebraic presentation of two sequences of parenthesis redistribu-
tions in a product of four objects (a standard example is a tensor product in tensor
categories): the left hand side corresponds to a passage ((12)3)4 → (1(23))4 →
1((23)4) → (1(2(34)), while the right hand side to ((12)3)4 → ((12)(34)) →
1(2(34)). The pentagon equation is the most important element of the Drinfeld’s
theory of associators. Our main technical result shows that solutions of equation (3)
with values in the group KV3 admit an almost unique decomposition of the form
(2), and the corresponding automorphism F is automatically a solution of the KV
problem (and, in particular, has the property (1)).

An important object of the Kashiwara-Vergne theory is the Duflo function J1/2

which corrects the symmetrization map sym : Sg → Ug so as it restricts to a ring
isomorphism on adg-invariants. It is more convenient to discuss the logarithm of
the Duflo function,

(4) f(x) =
1

2
ln

(
ex/2 − e−x/2

x

)
=

1

2

∞∑

k=2

Bk

k · k!
xk,

where Bk are Bernoulli numbers. The function f(x) is even, and it is known that

any function f̃(x) = f(x) + h(x) with h(x) odd still defines a ring isomorphism
between Z(Ug) and (Sg)g (in the category of Lie algebras, all these isomorphisms
coincide with the Duflo isomorphism). We show that the Drinfeld’s generators
σ2k+1, k = 1, 2, . . . of the Grothendieck-Teichmüller Lie algebra grt define flows on

the set of solutions of the KV conjecture Sol(K̂V), and on the odd parts of Duflo
functions such that (σ2k+1 · h)(x) = −x2k+1. Hence, all odd formal power series
(the linear term of the Duflo function is not well defined) h(x) can be reached by
the action of the group GRT on the symmetric Duflo function (4). This action
coincides with the one described in [15] (see Theorem 7).

The plan of the paper is as follows: in Section 2 we introduce a Hochschild-type
cohomology theory for free Lie algebras, compute the cohomology in low degrees
(Theorem 2.1), and discuss the associativity property of the Campbell-Hausdorff
series. In Section 3 we study derivations of free Lie algebras. Again, we define a
Hochschild-type cohomology theory, and compute cohomology in low degrees (The-
orem 3.1). In Section 4 we introduce a family of Kashiwara-Vergne Lie algebras kvn

and the Lie algebra k̂v2, and show that the Grothendieck-Teichmüller Lie algebra

grt injects into k̂v2 (Theorem 4.1). In Section 5 we give a new formulation of the
Kashiwara-Vergne conjecture, and show that it is equivalent to the original state-
ment of [13] (Theorem 5.2). In Section 6 we discuss properties of Duflo functions
and show that they can acquire arbitrary odd parts. In Section 7 we establish a link
between solutions of the KV problem and solutions of the pentagon equation with
values in the group KV3 (Theorem 7.1). In Section 8 we discuss an involution τ
on the set of solutions of the KV problem, and derive the hexagon equations using
this involution. Finally, in Section 9 we introduce associators with values in the
group KV3, compare them to Drinfeld’s associators, and give a new proof of the
KV conjecture (Theorem 9.2).
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2. Free Lie algebras

2.1. Lie algebras lien and the Campbell-Hausdorff series. Let K be a field
of characteristic zero, and let lien = lie(x1, . . . , xn) be the degree completion of the
free Lie algebra over K with generators x1, . . . , xn. It is a graded Lie algebra

lien =

∞∏

k=1

liek(x1, . . . , xn),

where liek(x1, . . . , xn) is spanned by Lie words consisting of k letters. In case of
n = 1, 2, 3 we shall often denote the generators by x, y, z.

The universal enveloping algebra of lien is the degree completion of the free
associative algebra with generators x1, . . . , xn, U(lien) = Assn. Every element
a ∈ Assn has a unique decomposition

(5) a = a0 +
n∑

k=1

(∂ka)xk,

where a0 ∈ K and (∂ka) ∈ Assn.
The Campbell-Hausdorff series is an element of Ass2 defined by formula ch(x, y) =

ln(exey), where ex =
∑∞

k=0 x
k/k! and ln(1 − a) = −

∑∞
k=1 a

k/k. By Dynkin’s the-
orem [9], ch(x, y) ∈ lie2 and

ch(x, y) = x+ y +
1

2
[x, y] + . . . ,

where . . . stands for a series in multiple Lie brackets in x and y. The Campbell-
Hausdorff series satisfies the associativity property in lie3,

(6) ch(x, ch(y, z)) = ch(ch(x, y), z).

One can rescale the Lie bracket of lie2 by posing [·, ·]s = s[·, ·] for s ∈ K to obtain
a rescaled Campbell-Hausdorff series,

chs(x, y) = x+ y +
s

2
[x, y] + . . . ,

where elements of liek(x, y) get a extra factor of sk−1. Note that chs(x, y) =
s−1 ch(sx, sy) and ch0(x, y) = x + y. The rescaled Campbell-Hausdorff series
chs(x, y) satisfies the associativity equation,

chs(x, chs(y, z)) = s−1 ch(sx, ch(sy, sz))
= s−1 ch(ch(sx, sy), sz)
= chs(chs(x, y), z).

Remark 2.1. Let g be a finite dimensional Lie algebra over K. Then, every element
a ∈ lien defines a formal power series ag on gn with values in g. For instance, the
Campbell-Hausdorff series ch ∈ lie2 defines a formal power series chg on g2 with
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rational coefficients. For every finite dimensional Lie algebra g this formal power
series has a finite convergence radius.

2.2. The vector space trn. For every n we define a graded vector space trn as a
quotient

trn = Ass+n /〈(ab− ba); a, b ∈ Assn〉.

Here Ass+n =
∏∞

k=1 Assk(x1, . . . , xn), and 〈(ab − ba); a, b ∈ Assn〉 is the subspace

of Ass+n spanned by commutators. Product of Assn does not descend to trn which
only has a structure of a graded vector space. We shall denote by tr : Assn → trn

the natural projection. By definition, we have tr(ab) = tr(ba) for all a, b ∈ Assn

imitating the defining property of trace.

Example 2.1. The space tr1 is isomorphic to the space of formal power series in
one variable without constant term, tr1 ∼= xK[[x]]. This isomorphism is given by
the following formula,

f(x) =

∞∑

k=1

fkx
k 7→

∞∑

k=1

fk tr(xk).

In general, graded components trk
n of the space trn are spanned by words of

length k modulo cyclic permutations.

Example 2.2. For n = 2, tr12 is spanned by tr(x) and tr(y), tr22 is spanned by
tr(x2), tr(y2) and tr(xy) = tr(yx), tr32 is spanned by tr(x3), tr(x2y), tr(xy2) and
tr(y3), tr42 is spanned by tr(x4), tr(x3y), tr(x2y2), tr(xyxy), tr(xy3) and tr(y4) etc.

Remark 2.2. Let g be a finite dimensional Lie algebra over K, ρ : g → End(V )
be a finite dimensional representation of g, and a =

∑∞
k=1 ak ∈ trn an element of

trn. We define ρ(a) as a formal power series on gn such that ρ(tr(xi1 . . . xik
)) =

TrV (ρ(xi1 ) . . . ρ(xik
)) for monomials, and this definition extends by linearity to all

elements of trn.

2.3. Cohomology problems in lien and trn. For all n = 1, 2, . . . we define an
operator δ : lien → lien+1 by formula

(7)
(δf)(x1, . . . , xn+1) = f(x2, x3, . . . , xn+1)

+
∑n

i=1(−1)if(x1, . . . , xi + xi+1, . . . , xn+1)
+ (−1)n+1f(x1, . . . , xn).

It is easy to see that δ2 = 0.

Example 2.3. For n = 1 and f = ax ∈ lie1 ∼= K we have

(δf)(x, y) = f(x) − f(x+ y) + f(y) = 0.

For n = 2 we get

(δf)(x, y, z) = f(y, z) − f(x+ y, z) + f(x, y + z) − f(x, y).

One can also use equation (7) to define a differential on the family for vector
spaces trn. By abuse of notations, we denote it by the same letter, δ : trn → trn+1.

Example 2.4. For n = 1, we have for f(x) = tr(xk)

(δf)(x, y) = tr(xk + yk − (x + y)k).

Note that the right hand side vanishes for k = 1 and that it is non-vanishing for all
other k = 2, 3 . . . .
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The following theorem gives the cohomology of δ in degrees n = 1, 2.

Theorem 2.1.

H1(lie, δ) = ker (δ : lie1 → lie2) = lie1 ,
H1(tr, δ) = ker (δ : tr1 → tr2) ∼= K tr(x) ,
H2(lie, δ) ∼= [K[x, y] ] ,
H2(tr, δ) = 0 .

Proof. The first statement is obvious since lie1 = Kx and δ(x) = x−(x+y)+y = 0.
The second statement follows from the calculation of Example 2.4.

For computing the second cohomology, let f be a solution of degree n ≥ 2 of
equation

(8) f(y, z)− f(x+ y, z) + f(x, y + z) − f(x, y) = 0.

By putting x 7→ sx, y 7→ x, z 7→ z we obtain

f(sx, x) + f((1 + s)x, z) − f(sx, x + z) − f(x, z) = 0.

In a similar fashion, putting x 7→ x, y 7→ z, z 7→ sz yields

f(x, z) + f(x+ z, sz)− f(x, (1 + s)z) − f(sz, z) = 0.

Subtracting the first equation from the second one and differentiating the result in
s gives

(9)
nf(x, z) = d

ds (f((1 + s)x, z) + f(x, (1 + s)z))|s=0

= d
ds (f(sx, x + z) + f(x+ z, sz)− f(sx, x) − f(sz, z))|s=0.

First, we solve equation (9) for f ∈ lie2. In this case, f(sx, x) = f(sz, z) = 0 and
we obtain

f(x, z) = adn−1
x+z(αx + βz)

for some α, β ∈ K. For n = 2, this yields f(x, z) = (β −α)[x, z]. It is easy to check
that this is a solution of equation (8).

For n ≥ 3, consider equation (8) and first put y = −z to get f(x, z) = −f(x −
z, z), and then put y = −x to obtain f(x, z) = −f(−x, x+ z). Hence,

f(x, z) = (α− β) adn−1
x z = (α − β) adn−1

z x

which implies f(x, z) = 0. Finally, for n = 1 we put f(x, y) = αx + βy to obtain
δf = αx− βz. In conclusion, δf = 0 implies that f is of degree two, and f(x, y) =
α[x, y] for α ∈ K.

For f ∈ tr2 equation (9) gives

f(x, z) = tr
(
(αx + βz)(x+ z)n−1 − αxn − βzn

)
,

for some α, β ∈ K. For n = 1, it implies f(x, z) = 0. For n = 2, we get

f(x, z) = (α + β) tr(xz) = −
α+ β

2
δ(tr(x2)) .

For n ≥ 3, we have

δf = (β − α) tr y((x+ y)n−1 + (y + z)n−1 − (x+ y + z)n−1 − yn−1) .

The coefficient in front of tr(yn−2xz) in this expression is equal to (β − α)(n− 2),
and it vanishes if and only if β = α. In this case, f(x, z) = −αδ(tr(xn)). Hence,
δf = 0 implies the existence of g ∈ tr1 such that δg = f , and the second cohomology
H2(tr, δ) vanishes. �
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Remark 2.3. In the proof of Theorem 2.1 we have shown that ker (δ : lie2 →
lie3) = K[x, y]. That is, the only solution of equation (8) is f(x, y) = α[x, y].
Equation (8) has been previously considered in the proof of Proposition 5.7 in [7].
There it is stated that equation (8) has no nontrivial symmetric, f(x, y) = f(y, x),
solutions in lie2.

2.4. Applications. In this section we collect two simple applications of the coho-
mology computations of Section 2.3.

Proposition 2.1. Let s ∈ K and let χ ∈ lie2 be a Lie series of the form χ(x, y) =
x+ y + s

2 [x, y] + . . . , where . . . stand for a series in multibrackets. Assume that χ
is associative, that is

χ(x, χ(y, z)) = χ(χ(x, y), z) ∈ lie3 .

Then, χ coincides with the rescaled Campbell-Hausdorff series, χ(x, y) = chs(x, y).

Proof. The Lie series χ and chs coincide up to degree 2. Assume that they coincide
up to degree n− 1, and let χ =

∑∞
n=1 χn with χn(x, y) a Lie polynomial of degree

n. The associativity equation implies the following equation for χn:

χn(x, y + z) + χn(y, z)− χn(x, y) − χn(x+ y, z) = F(χ1(x, y), . . . , χn−1(x, y)),

where F is a certain (nonlinear) function of the lower degree terms. By the induction
hypothesis, the lower degree terms of χ and chs coincide. And the equation for χn

has a unique solution since the only solution of the corresponding homogeneous
equation δχn = 0 for n ≥ 3 is χn = 0. Hence, χn = (chs)n and χ = chs. �

Similar to the differential δ, we introduce another differential δ̃ acting on lien

and trn:

(10)
(δ̃f)(x1, . . . , xn+1) = f(x2, x3, . . . , xn+1)

+
∑n

i=1(−1)if(x1, . . . , ch(xi, xi+1), . . . , xn+1)
+ (−1)n+1f(x1, . . . , xn).

Again, δ̃2 = 0, but in contrast to δ, δ̃ does not preserve the degree. In the following
proposition we compute the cohomology of δ̃ for n = 1, 2.

Proposition 2.2.

H1(lie, δ̃) = 0 ,

H1(tr, δ) = ker (δ̃ : tr1 → tr2) ∼= K tr(x) ,
H2(lie, δ) = 0 ,
H2(tr, δ) = 0 .

Proof. ForH1(lie, δ̃) we consider δ̃(x) = x+y−ch(x, y) 6= 0 which impliesH1(lie, δ̃) =

ker(δ̃ : lie1 → lie2) = 0. To compute H1(tr, δ), observe that δ̃(tr(x)) = tr(x + y −
ch(x, y)) = 0 (here we used that tr(a) = 0 for all a ∈ lien of degree greater or equal

to two), and δ̃ tr(xk) = δ tr(xk) + · · · 6= 0 for k ≥ 2 (here . . . stand for the terms of
degree greater than k).

In order to compute the second cohomology, let f =
∑∞

n=k fn, where fn is

homogeneous of degree n, and fk 6= 0. Then, δ̃f = δfk + terms of degree > k, and
δ̃f = 0 implies δfk = 0.

First, consider f ∈ lie2. In this case, δfk = 0 implies fk = 0 for all k except
k = 2. For k = 2, we have f2(x, y) = α

2 [x, y] for some α ∈ K. Define g = f+α(δ̃x) =
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f + α(x + y − ch(x, y)). We have δ̃g = δ̃f + αδ̃2x = 0, and g2(x, y) = 0. Hence,

g = 0 and f = −α(x+ y − ch(x, y)) = δ̃(−αx).
For f ∈ tr2, equation δfk = 0 implies fk = δhk for some hk ∈ tr1. Consider

g = f − δ̃hk. It satisfies δ̃g = 0, and g =
∑∞

n=k+1 gk. In this way, we inductively

construct h ∈ tr1 such that g = δ̃h. �

Remark 2.4. For every s ∈ K one can introduce a differential δ̃s by replacing
ch(x, y) with chs(x, y) in formula (10). We have δ̃1 = δ̃ and δ̃0 = δ. Proposition 2.2

applies to all s 6= 0. Note that H1(tr, δ̃s) = K tr(x) and H2(tr, δ̃s) = 0 for all s ∈ K

(including s = 0).

3. Derivations of free Lie algebras

3.1. Tangential and special derivations. We shall denote by dern the Lie al-
gebra of derivations of lien. An element u ∈ dern is completely determined by its
values on the generators, u(x1), . . . , u(xn) ∈ lien. The Lie algebra dern carries a
grading induced by the one of lien.

Definition 3.1. A derivation u ∈ dern is called tangential if there exist ai ∈ lien, i =
1, . . . , n such that u(xi) = [xi, ai].

Another way to define tangential derivations is as follows: for each i = 1, . . . , n
there exists an inner derivation ui such that (u − ui)(xi) = 0. We denote the
subspace of tangential derivations by tdern ⊂ dern.

Remark 3.1. Let pk : lien → K be a projection which assigns to an element
a =

∑n
k=1 λkxk + . . . , where . . . stand for multibrackets, the coefficient λk ∈ K.

Elements of tdern are in one-to-one correspondence with n-tuples of elements of lien,
(a1, . . . , an), which satisfy the condition pk(ak) = 0 for all k. Indeed, the kernel
of the operator adxk

: a 7→ [xk, a] is exactly Kxk. Hence, an n-tuple (a1, . . . , an)
defines a vanishing derivation u(xk) = [xk, ak] = 0 if and only if ak ∈ Kxk for all
k. By abuse of notations, we shall often write u = (a1, . . . , an).

Proposition 3.1. Tangential derivations form a Lie subalgebra of dern.

Proof. Let u = (a1, . . . , an) and v = (b1, . . . , bn). We have

[u, v](xk) = u([xk, bk]) − v([xk, ak])
= [[xk, ak], bk] + [xk, u(bk)] − [[xk, bk], ak] − [xk, v(ak)]
= [xk, u(bk) − v(ak) + [ak, bk]]

which shows [u, v] ∈ tdern. �

One can transport the Lie bracket of tdern to the set of n-tuples (a1, . . . , an)
which satisfy the condition pk(ak) = 0. Indeed, put the kth component of the new
n-tuple equal to u(bk) − v(ak) + [ak, bk]. This expression does not contain linear
terms, and in particular it is in the kernel of pk.

Definition 3.2. A derivation u ∈ tdern is called special if u(x) = 0 for x =
∑n

i=1 xi.

We shall denote the space of special derivations of lien by sdern. It is obvious
that sdern ⊂ tdern is a Lie subalgebra. Indeed, for u, v ∈ sdern we have [u, v](x) =
u(v(x)) − v(u(x)) = 0 and, hence, [u, v] ∈ sdern.

Remark 3.2. Ihara [11] calls elements of sdern normalized special derivations.
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Example 3.1. Consider r = (y, 0) ∈ tder2. By definition, r(x) = [x, y], r(y) = 0.
Note that r(x+y) = [x, y] 6= 0 and r /∈ sder2. Consider another element t = (y, x) ∈
tder2. We have t(x) = [x, y], t(y) = [y, x] and t(x + y) = [x, y] + [y, x] = 0. Hence,
t ∈ sder2.

3.2. Simplicial and coproduct maps. We shall need a number of Lie algebra
homomorphisms mapping tdern−1 to tdern. First, observe that the permutation
group Sn acts on lien by Lie algebra automorphisms. For σ ∈ Sn, we have a 7→
aσ = a(xσ(1), . . . , xσ(n)). The induced action on tdern is given by formula,

u = (a1, . . . , an) 7→ uσ = (aσ−1(1)(xσ(1), . . . , xσ(n)), . . . , aσ−1(n)(xσ(1), . . . , xσ(n))).

Example 3.2. For u = (a(x, y), b(x, y)) ∈ tder2 we have u2,1 = (b(y, x), a(y, x)),
where σ = (21) is the nontrivial element of S2. In the same fashion, for u =
(a(x, y, z), b(x, y, z), c(x, y, z)) ∈ tder3 we have u3,1,2 = (b(z, x, y), c(z, x, y), a(z, x, y)).

We define simplicial maps by the following property. For u = (a1, . . . , an−1) ∈
tdern−1 define u1,2,...,n−1 = (a1, . . . , an−1, 0) ∈ tdern. It is clear that the map
u 7→ u1,2,...,n−1 is a Lie algebra homomorphism. We obtain other simplicial maps
by composing with the action of Sn on tdern. Simplicial maps restrict to special
derivations. Indeed, for u ∈ sdern−1 and x =

∑n
i=1 xi we compute

u1,2,...,n−1(x) =

n−1∑

i=1

[xi, ai] = 0

which implies u1,2,...,n−1 ∈ sdern.

Example 3.3. For u = (a(x, y), b(x, y)) ∈ tder2 we have u1,2 = (a(x, y), b(x, y), 0) ∈
tder3 and u2,3 = (0, a(y, z), b(y, z)). For instance, for r = (y, 0) we obtain r1,2 =
(y, 0, 0), r2,3 = (0, z, 0), r1,3 = (z, 0, 0).

Proposition 3.2. The element r = (y, 0) ∈ tder2 satisfies the classical Yang-Baxter

equation,

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0.

Proof. We compute,

[r1,2, r1,3] = [(y, 0, 0), (z, 0, 0)] = ([y, z], 0, 0),

[r1,2, r2,3] = [(y, 0, 0), (0, z, 0)] = −([y, z], 0, 0),

[r1,3, r2,3] = [(z, 0, 0), (0, z, 0)] = 0.

Adding these expressions gives zero, as required. �

Next, consider t = (y, x) ∈ sder2. By composing various simplicial maps we
obtain n(n− 1)/2 elements of ti,j = tj,i ∈ tdern with non-vanishing components xi

at the jth place and xj at the ith place.

Proposition 3.3. Elements ti,j ∈ sdern span a Lie subalgebra isomorphic to the

quotient of the free Lie algebra with n(n−1)/2 generators by the following relations,

(11) [ti,j , tk,l] = 0

for k, l 6= i, j, and

(12) [ti,j + ti,k, tj,k] = 0

for all triples of distinct indices i, j, k.
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Remark 3.3. We denote by tn the Lie algebra defined by relations (11) and (12).
Note that c =

∑
i<j t

i,j is a central element of tn. Indeed, [ti,j , c] =
∑

k 6=i,k 6=j [t
i,j , ti,k+

tj,k] = 0. It is known (see Section 5 of [7]) that

tn ∼= tn−1 ⊕ lie(t1,n, . . . , tn−1,n),

where the free Lie algebra lie(t1,n, . . . , tn−1,n) is an ideal in tn and tn−1 ⊂ tn is
a complementary Lie subalgebra spanned by ti,j with i, j < n . In particular,
t2 = Kt1,2 is an abelian Lie algebra with one generator, and t3 ∼= t2 ⊕ lie(t1,3, t2,3).
In fact, adt1,2 is an inner derivation of lie(t1,3, t2,3),

[t1,2, a] = [t1,2 − c, a] = −[t1,3 + t2,3, a],

and t3 ∼= Kc⊕ lie(t1,3, t2,3).

Proof. First, we verify the relations (11) and (12). The first one is obvious since
the derivations ti,j and tk,l act on different generators of lien. For the second one,
we choose n = 3 and compute [t1,2 + t1,3, t2,3]:

[t1,2, t2,3] = [(y, x, 0), (0, z, y)] = (−[y, z], [x, z], [y, x]),

[t1,3, t2,3] = [(z, 0, x), (0, z, y)] = (−[z, y], [z, x], [x, y]).

Adding these expressions gives zero, as required. We obtain the relation (12) for
other values of i, j, k by applying the Sn action to replace 1, 2, 3 by i, j, k. Hence,
the expressions ti,j define a Lie algebra homomorphism from tn to sdern. We
prove that it is injective by induction. Clearly, the map t2 = Kt1,2 → sder2 is
injective. Assume that the Lie homomorphism tn−1 → tdern−1 is injective. Let
a ∈ tn, a = a′ + a′′, where a′ ∈ tn−1 and a′′ ∈ lie(t1,n, . . . , tn−1,n). We de-
note by A′ and A′′ their images in sdern. Observe that A′(xn) = 0 since A′

is a derivation acting only on generators x1, . . . , xn−1. It is easy to check that
A′′(xn) = [xn, a

′′(x1, . . . , xn−1)], where a′′(x1, . . . , xn−1) is obtained by replacing
the generators ti,n by xi in a′′(t1,n, . . . , tn−1,n). Assuming A = A′ + A′′ = 0, we
have A(xn) = 0 which implies A′′(xn) = 0 and a′′ = 0. Then, a = a′ ∈ tn−1 and
A = 0 implies a = 0 by the induction hypothesis. �

Proposition 3.4. The element c =
∑

i<j t
i,j belongs to the center of sdern.

Proof. First, note that c(xi) =
∑

j 6=i[xi, xj ] = [xi, x] for x =
∑n

j=1 xj . Hence,

c is an inner derivation, and for any a ∈ lien we have c(a) = [a, x]. Let u =
(a1, . . . , ak) ∈ sdern and compute the kth component of the bracket [c, u]:

c(ak) − u(
∑

i6=k xi) +
∑

i6=k[xi, ak] = [ak, x] + u(xk) +
∑

i6=k[xi, ak]

= [ak, x] + [xk, ak] +
∑

i6=k[xi, ak]

= [ak, x] + [x, ak] = 0.

Here we have used that u(x) = 0 for u ∈ sdern. �

Another family of Lie algebra homomorphisms tdern−1 → tdern is given by co-

product maps. For u = (a1, . . . , an−1) ∈ tdern−1 we define

u12,3,...,n = (a1(x1 + x2, x3, . . . , xn),
a1(x1 + x2, x3, . . . , xn),
a2(x1 + x2, x3, . . . , xn),
. . . ,
an−1(x1 + x2, x3, . . . , xn)).
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Other coproduct maps are obtained by using the action of the permutation groups
on tdern−1 and on tdern.

Example 3.4. For n = 2 and u = (a(x, y), b(x, y)) we have u12,3 = (a(x +
y, z), a(x+ y, z), b(x+ y, z)) and u1,23 = (a(x, y + z), b(x, y + z), b(x, y + z)).

Coproduct maps tdern−1 → tdern are Lie algebra homomorphisms. Let u =
(a, b) ∈ tder2 and compute u12,3(x+ y) = [x+ y, a(x+ y, z)] and u12,3(z) = [z, b(x+
y, z)]. Hence, for any f ∈ lie2 we obtain u12,3(f(x + y, z)) = (u(f))(x + y, z). For
u = (a1, b1), v = (a2, b2) ∈ tder2 we compute [u12,3, v12,3] = (c1, c2, c3) where

c1 = c2 = u12,3(a2(x+ y, z)) − v12,3(a1(x+ y, z)) + [a1(x+ y, z), a2(x + y, z)]
= (u(a2) − v(a1) + [a1, a2])(x + y, z),

c3 = u12,3(b2(x+ y, z)) − v12,3(b1(x+ y, z)) + [b1(x+ y, z), b2(x + y, z)]
= (u(b2) − v(b1) + [b1, b2])(x + y, z).

Hence, [u12,3, v12,3] = [u, v]12,3. Coproduct maps restrict to Lie subalgebras of
special derivations. For u ∈ sdern−1 and x =

∑n
i=1 xi we compute

u12,3,...,n(x) = [x1 + x2, a1(x1 + x2, . . . , xn)] + · · · + [xn, an−1(x1 + x2, . . . , xn)] = 0

which implies u12,3,...,n ∈ sdern.

Example 3.5. For r = (y, 0) ∈ tder2 we have r12,3 = (z, z, 0) = r1,3 + r2,3 and
r1,23 = (y + z, 0, 0) = r1,2 + r1,3. Similarly, for t = (y, x) ∈ tder2 we have t12,3 =
(z, z, x+ y) = t1,3 + t2,3 and t1,23 = (y + z, x, x) = t1,2 + t1,3.

Let u = (a1, b1) ∈ sder2 and v = (a2, b2) ∈ tder2. Then, [u1,2, v12,3] = 0. Indeed,
note that u1,2 acts by zero on lie(x+y, z) and v12,3 acts as an inner derivation with
generator a2(x+ y, z) on lie(x, y). We compute

[u1,2, v12,3](x) = u1,2([x, a2(x+ y, z)]) − v12,3([x, a1(x, y)])
= [[x, a1(x, y)], a2(x+ y, z)] − [[x, a1(x, y)], a2(x+ y, z)] = 0,

and similarly [u1,2, v12,3](y) = 0. Finally, [u1,2, v12,3](z) = u1,2([z, b2(x+y, z)]) = 0.
In general, for u ∈ sdern, v ∈ tderm+1 we have [u1,2,...,n, v12...n,n+1,...,n+m] = 0.

3.3. Cohomology. We define a differential d : tdern → tdern+1 by formula,

du = u2,3,...,n+1 − u12,...,(n−1),n + · · · + (−1)nu1,2,...,(n−1)n + (−1)n+1u1,2,...,n.

It is easy to check that d squares to zero, d2 = 0.

Example 3.6. For u ∈ tder2 we get du = u2,3 − u12,3 + u1,23 − u1,2. For u ∈ tder3
we obtain du = u2,3,4 − u12,3,4 + u1,23,4 − u1,2,34 + u1,2,3.

We shall compute the cohomology groups

Hn(tder, d) = ker(d : tdern → tdern+1)/im(d : tdern−1 → tdern)

for n = 2, 3.

Theorem 3.1.

H2(tder, d) = ker(d : tder2 → tder3) = Kr ⊕ Kt,
H3(tder, d) ∼= K[(0, [z, x], 0)],

where r = (y, 0), t = (y, x).
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Proof. Since tder1 = 0, we have H2(tder, d) = ker(d : tder2 → tder3). Let u =
(a, b) ∈ tder2, and consider du = u2,3 − u12,3 + u1,23 − u1,2. Equation du = 0 reads

− a(x+ y, z) + a(x, y + z) − a(x, y) = 0,
a(y, z) − a(x+ y, z) + b(x, y + z) − b(x, y) = 0,
b(y, z) − b(x+ y, z) + b(x, y + z) = 0.

Put x = 0 in the first equation to get a(y, z) = a(0, y + z) − a(0, y) = αz. In the
same way, put z = 0 in the third equation to obtain b(x, y) = b(x+y, 0)−b(y) = βx.
All three equations are satisfied by u = (αy, βx) = (α − β)r + βt for all α, β ∈ K.
Hence, ker(d : tder2 → tder3) = Kr ⊕ Kt

In order to compute H3(tder, d) we put u = (a, b, c) ∈ tder3 and write du =
u2,3,4 − u12,3,4 + u1,23,4 − u1,2,34 + u1,2,3. Equation du = 0 yields

−a(x+ y, z, w) +a(x, y + z, w) −a(x, y, z + w) +a(x, y, z) = 0,
a(y, z, w) −a(x+ y, z, w) +b(x, y + z, w) −b(x, y, z + w) +b(x, y, z) = 0,
b(y, z, w) −b(x+ y, z, w) +b(x, y + z, w) −c(x, y, z + w) +c(x, y, z) = 0,
c(y, z, w) −c(x+ y, z, w) +c(x, y + z, w) −c(x, y, z + w) = 0,

Make a substitution x 7→ x, y 7→ −x, z 7→ x+ y, w 7→ z in the first equation to get

a(x, y, z) = a(x,−x, x+ y + z) − a(x,−x, x + y) + a(0, x+ y, z).

Let f(x, y) = −a(x,−x, x+ y) and k(x, y) = a(0, x, y)− f(x, y) to get the following
expression for a,

a(x, y, z) = f(x, y) − f(x, y + z) + f(x+ y, z) + k(x+ y, z).

In the same fashion, putting x 7→ y, y 7→ z + w, z 7→ −w,w 7→ w in the forth
equation gives

c(y, z, w) = c(y + z + w,−w,w) − c(z + w,−w,w) + c(y, z + w, 0).

By letting g(z, w) = −c(z + w,−w,w) and l(z, w) = c(z, w, 0) + g(z, w) we obtain

c(y, z, w) = −g(y, z + w) + g(y + z, w) − g(z, w) + l(y, z + w).

Consider ũ = (ã, b̃, c̃) = u + d(f, g). It satisfies dũ = 0 and it has ã(x, y, z) =
k(x+y, z) and c̃(x, y, z) = l(x, y+z). The first equation (for ã) implies k(x+y, z) =
k(x+ y, z + w) which forces k = 0 (since ã does not contain terms linear in x). In
the same way, the forth equation yields l(x+ y, z + w) = l(y, z + w) which implies

l = 0. Hence, ũ = (0, b̃, 0). Denote h(x, y) = b̃(x, 0, y) and first put y = 0 in the

third equation to get b̃(x, z, w) = h(x, z + w) − h(x, z), then put z = 0 to obtain

b̃(x, y, w) = h(x+ y, w) − h(y, w). These two equations imply

h(x, y) − h(x, y + w) + h(x+ y, w) − h(y, w) = 0,

and, by Theorem 2.1, h(x, y) = γ[x, y] for some γ ∈ K. This implies b̃(x, y, z) =
γ[x, y + z] − γ[x, y] = γ[x, z]. It is easy to check that ũ = (0, γ[x, z], 0) verifies
dũ = 0. Finally, in degree two, im(d : tder2 → tder3) is spanned by

d(α[x, y], β[x, y]) = (−α[y, z], (α− β)[z, x], β[x, y]),

and (0, γ[x, z], 0) /∈ im(d : tder2 → tder3) for γ 6= 0. �
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3.4. Cocycles in trn. The action of dern extends from lien to Assn and descends
to the graded vector space trn. For u ∈ dern and a ∈ trn we denote this action by
u · a ∈ trn.

Example 3.7. Let r = (y, 0) ∈ tder2, and a = tr(xy) ∈ tr2. We compute r · a =
tr(r(x)y + xr(y)) = tr([x, y]y) = tr((xy − yx)y) = 0.

We shall be interested in 1-cocycles on the subalgebra tdern with values in trn.
That is, we are looking for linear maps α : tdern → trn such that

u · α(v) − v · α(u) − α([u, v]) = 0

for all u, v ∈ tdern.

Proposition 3.5. For all k = 1, . . . , n the map α : u = (a1, . . . , an) 7→ tr(ak) is a

1-cocycle.

Proof. Note that α vanishes on all elements of degree greater or equal to two.
Hence, α([u, v]) = 0 for all u, v ∈ tdern. Let u = (a1, . . . , an) and v = (b1, . . . , bn).
Then, u ·α(v) = u · tr(bk) = tr(u(bk)) = 0 since u(bk) is of degree at least two, and
similarly v · α(u) = tr(v(ak)) = 0. �

Proposition 3.6. The map div : u = (a1, . . . , an) 7→
∑n

k=1 tr(xk(∂kak)) is a 1-

cocycle.

Proof. On the one hand, we get

u · div(v) − v · div(u) =
∑n

k=1 tr (u(xk(∂kbk)) − v(xk(∂kak)))
=

∑n
k=1 tr([xk, ak](∂kbk) + xku(∂kbk)

− [xk, bk](∂kak) − xkv(∂kak)).

On the other hand, we obtain,

div([u, v]) =
∑n

k=1 tr(xk∂k(u(bk) − v(ak) + [ak, bk]))
=

∑n
k=0 tr(xk∂k(u(

∑n
i=1(∂ibk)xi) − v(

∑n
j=1(∂jak)xj) + [ak, bk]))

=
∑n

k=0 tr(xk∂k(
∑n

i=1(u(∂ibk)xi + (∂ibk)[xi, ai])
−

∑n
j=1(v(∂jak)xj + (∂jak)[xj , aj]) + [ak, bk]))

=
∑n

k=0 tr(xk(u(∂kbk) − (∂kbk)ak +
∑n

i=1(∂ibk)xi(∂kai)
− v(∂kak) + (∂kak)bk −

∑n
j=1(∂jak)xj(∂kbj) + ak(∂kbk) − bk(∂kak)))

=
∑n

k=1 tr(xk(u(∂kbk) − (∂kbk)ak − v(∂kak)
+ (∂kak)bk + ak(∂kbk) − bk(∂kak)))
= u · div(v) − v · div(u).

proving the cocycle condition. Here we have used the definition of ∂k operators (see
equation (5)) and the fact that ak =

∑n
j=1(∂jak)xj and bk =

∑n
i=1(∂ibk)xi. �

The divergence cocycle transforms in a nice way under simplicial and coproduct
maps. For u = (a1, . . . , an) ∈ tdern we have div(u1,2,...,n) =

∑n
i=1 tr(xi(∂iai)) =

div(u)(x1, . . . , xn). For div(u12,...,n+1) we compute

div(u12,...,n+1) = tr(x1(∂1a1(x1 + x2, . . . )) + x2(∂2a1(x1 + x2, . . . )))

+
∑n+1

k=3 tr(xk(∂kak−1(x1 + x2, . . . )))
= tr((x1 + x2)(∂1a1)(x1 + x2, . . . )
+

∑n
k=2 xk+1(∂kak)(x1 + x2, . . . ))

= (div(u))(x1 + x2, x3, . . . , xn+1).

Proposition 3.7. div(du) = δ(div(u)).
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Proof. We compute,

div(du) = div(u2,...,n+1) − div(u12,...,n+1) + · · · + (−1)n+1div(u1,2,...,n)
= div(u)(x2, . . . , xn+1) − div(u)(x1 + x2, . . . , xn+1) + . . .
+ (−1)n+1div(x1, . . . , xn)
= δ(div(u)).

�

4. Kashiwara-Vergne Lie algebras

4.1. Definitions. In this section we introduce a family of subalgebras of sdern

called Kashiwara-Vergne Lie algebras.

Definition 4.1. The Kashiwara-Vergne Lie algebra kvn is a Lie subalgebra of
special derivations spanned by elements with vanishing divergence.

Note that kvn is indeed a Lie subalgebra of sdern. For two derivations u, v ∈ kvn

the cocycle property for divergence implies div([u, v]) = u · div(v) − v · div(u) = 0,
as required.

Example 4.1. The element t = (y, x) ∈ sder2 is contained in kv2. Indeed, we have
a(x, y) = y, b(x, y) = x and ∂xa = ∂yb = 0 which implies div(t) = 0.

Simplicial and coproduct maps restrict to kvn subalgebras. Indeed, for u ∈ sdern

the condition div(u) = 0 implies div(u1,2,...,n) = 0 and div(u12,3,...,n+1) = 0.

Example 4.2. Since t ∈ kv2, we have t1,2, t1,3, t2,3 ∈ kv3 and [t1,3, t2,3] = ([y, z], [z, x], [x, y]) ∈
kv3.

In the case of n = 2 we introduce an extension of kv2,

k̂v2 := {u ∈ sder2, div(u) ∈ ker(δ)}.

Recall that ker(δ : tr2 → tr3) = im(δ : tr1 → tr2). Hence, for u ∈ k̂v2 there exists
an element f ∈ tr1 such that div(u) = tr(f(x)− f(x+ y)+ f(y)). By Theorem 2.1,
such an element is unique if we choose it in the form f(x) =

∑∞
k=2 fkx

k. By abuse
of notations we denote by f the map f : u 7→ f , and by fk the maps fk : u 7→ fk.

The subspace k̂v2 is a Lie subalgebra of sder2. Indeed, for two derivations u, v ∈

k̂v2 we compute div([u, v]) = u · div(v) − v · div(u). We have div(v) = δf =
tr(f(x) − f(x + y) + f(y)) with f ∈ x2

K[[x]]. Note that u · tr(f(x + y)) = 0
since u(x + y) = 0 and u · tr(f(x)) = tr([x, a]f ′(x)) = tr([xf ′(x), a]) = 0, where
u(x) = [x, a]. Hence, u · div(v) = 0, and similarly v · div(u) = 0. In fact, we proved

[k̂v2, k̂v2] ⊂ kv2.

Proposition 4.1. Let u ∈ k̂v2. Then, f(u) is odd, and Taylor coefficients fk, k =

3, 5, . . . are characters of k̂v2.

Proof. Let u ∈ k̂v2 with divergence div(u) = tr(f(x) − f(x + y) + f(y)), where
f(x) =

∑∞
k=2 fkx

k. Note that the coefficient in front of tr(xyn−1) in div(u) is equal

to −nfn. Since u = (a, b) ∈ k̂v2, we have u(x + y) = [x, a] + [y, b] = 0. Consider
terms linear in x in both a and b. First, observe that b does not contain terms of
the form adm

y (x) for m ≥ 1 since adm+1
y (x) /∈ im(adx). In particular, this applies to

all m odd. Next, note that a does not contain terms of the form adm
y (x) for m odd

since in this case [x, adm
y (x)] /∈ im(ady). Hence, div(u) = tr(x∂xa+ y∂yb) does not
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contain terms of the form tr(xym) for m odd, and fk = 0 for all k = m + 1 even.

Finally, Taylor coefficients of f are characters of k̂v2 since they vanish on kv2, and

on [k̂v2, k̂v2] ⊂ kv2. �

4.2. The Grothendieck-Teichmüller Lie algebra. Recall that the Grothendieck-
Teichmüller Lie algebra grt was defined by Drinfeld [7] in the following way. It is
spanned by derivations (0, ψ) ∈ tder2 which satisfy the following three relations

(13) ψ(x, y) = −ψ(y, x),

(14) ψ(x, y) + ψ(y, z) + ψ(z, x) = 0

for x+ y + z = 0 (that is, one can put z = −x− y),

(15) ψ(t1,2, t2,34) + ψ(t12,3, t3,4) = ψ(t2,3, t3,4) + ψ(t1,23, t23,4) + ψ(t1,2, t2,3),

where the last equation takes values in the Lie algebra t4 and t1,23 = t1,2 + t1,3 etc.

Note that defining equations of grt have no solutions in degrees one and two. The
Lie bracket induced on solutions of (13), (14),(15) is called Ihara bracket,

[ψ1, ψ2]Ih = (0, ψ1)(ψ2) − (0, ψ2)(ψ1) + [ψ1, ψ2].

Theorem 4.1. The map ν : ψ 7→ (ψ(−x − y, x), ψ(−x − y, y)) is an injective Lie

algebra homomorphism mapping grt to k̂v2.

We split the proof of Theorem 4.1 into several steps.

Proposition 4.2. Let ψ ∈ grt. Then, Ψ = ν(ψ) verifies

(16) dΨ = ψ(t1,2, t2,3).

We defer the proof of this proposition to Appendix.

Proposition 4.3. im(ν) ⊂ k̂v2.

Proof. Using equation (16) we compute

δ(Ψ(x+ y)) = (dΨ)(x + y + z) = ψ(t1,2, t2,3)(x + y + z) = 0

because t1,2, t2,3 ∈ sder3. Since Ψ ∈ tder2 is of degree at least three, Ψ(x+ y) is of
degree at least four, and by Theorem 2.1 this implies Ψ(x+ y) = 0 and Ψ ∈ sder2.

Similarly, we compute

δ(div(Ψ)) = div(dΨ) = div(ψ(t1,2, t2,3)) = 0

since t1,2, t2,3 ∈ kv3. By Theorem 2.1, this implies div(Ψ) ∈ im(δ) and Ψ ∈ k̂v2. �

Proposition 4.4. ν : grt → k̂v2 is a Lie algebra homomorphism.

Proof. Let ψ1, ψ2 ∈ grt and compute (a, b) = [ν(ψ1), ν(ψ2)],

a(x, y) = ν(ψ1)(ψ2(−x− y, x)) − ν(ψ2)(ψ1(−x− y, x)
+ [ψ1(−x− y, x), ψ2(−x− y, x)]
= ((0, ψ1)(ψ2) − (0, ψ2)(ψ1) + [ψ1, ψ2]) (−x− y, x),

where we used that ν(ψ1), ν(ψ2) ∈ sder2. Similarly, we have

b(x, y) = ν(ψ1)(ψ2(−x− y, y)) − ν(ψ2)(ψ1(−x− y, y)
+ [ψ1(−x− y, y), ψ2(−x− y, y)]
= ((0, ψ1)(ψ2) − (0, ψ2)(ψ1) + [ψ1, ψ2]) (−x− y, y).

In conclusion, [ν(ψ1), ν(ψ2)] = ν([ψ1, ψ2]Ih), as required. �
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This observation completes the proof of Theorem 4.1.
It is known [11, 7] that there exit elements σ2n+1 ∈ grt of degree 2n+ 1 for all

n = 1, 2, . . . Modulo the double commutator ideal [[lie2, lie2], [lie2, lie2]], σ2n+1 has
the following form,

(17) σ2n+1 =

2n∑

k=1

(2n+ 1)!

k!(2n+ 1 − k)!
adk−1

x ad2n−k
y [x, y].

Proposition 4.5. f ◦ ν(σ2n+1) = −x2n+1.

Proof. Equation (17) implies that the linear in x part of a(x, y) = σ(−x − y, x) is

equal to (2n+ 1) ad2n
y x, and the linear in x part of b(x, y) = σ(−x− y, y) vanishes.

Hence, the coefficient in front of tr(xy2n) in div(ν(σ2n+1)) is equal to (2n+1), and

div(ν(σ2n+1)) = − tr(x2n+1 − (x+ y)2n+1 + y2n+1) = −δ tr(x2n+1),

which implies f(ν(σ2n+1)) = −x2n+1. �

Theorem 4.1 shows that k̂v2 is infinite dimensional, and Proposition 4.5 implies

that characters fk, k = 3, 5, . . . are surjective. The Lie algebra k̂v2 contains a central
one dimensional Lie subalgebra Kt for t = (y, x), and a Lie subalgebra isomorphic
to the Lie algebra grt. This observation suggests the following conjecture on the

structure of k̂v2.

Conjecture. The Lie algebra k̂v2 is isomorphic to a direct sum of the Grothendieck-
Teichmüller Lie algebra grt and a one dimensional Lie algebra with generator in

degree one, k̂v2
∼= Kt⊕ grt.

Remark 4.1. The Deligne-Drinfeld conjecture (see Section 6, [7]) states that grt

is a free Lie algebra with generators σ2n+1. In [18], Racinet introduced a graded
Lie algebra dmr0 related to combinatorics of multiple zeta values. A numerical
experiment of [10] shows that up to degree 19 the Lie algebra dmr0 is freely gener-
ated by σ2k+1, and that dmr0 ⊂ grt. A numerical computation by Albert and the
second author [1] shows that up to degree 16 the dimensions of graded components

of k̂v2 coincide with those of Kt⊕ lie(σ3, σ5, . . . ) (up to degree 7, the computation

has been done by Podkopaeva [16]) . Since Kt ⊕ ν(grt) ⊂ k̂v2, we conclude that
the Conjecture stated above and the Deligne-Drinfeld conjecture are verified up to
degree 16.

5. The Kashiwara-Vergne problem

5.1. Automorphisms of free Lie algebras. Recall that one can associate a
group G to a positively graded Lie algebra g =

∏∞
k=1 gk with all graded components

of finite dimension. G coincides with g as a set, and the group multiplication is
defined by the Campbell-Hausdorff formula. If g is finite dimensional, G is the
connected and simply connected Lie group with Lie algebra g. Even for g infinite
dimensional we shall denote the map identifying g and G by exp : g → G and its
inverse by ln : G→ g. Then, the definition of the group multiplication in G reads:
exp(u) exp(v) = exp(ch(u, v)).

Lie algebras tdern, sdern, kvn and k̂v2 introduced in the previous Section are pos-
itively graded, and all their graded components are finite dimensional. Hence, they

integrate to groups. We shall denote these groups by TAutn, SAutn,KVn and K̂V2,
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respectively. The natural actions of tdern, sdern, kvn and k̂v2 on lien and on trn lift
to actions of the corresponding groups given by formula

exp(u)(a) :=

∞∑

n=0

un(a),

where un(a) is the n-tuple action of the derivation u on a. Note that the group
TAutn consists of automorphisms g of lien with the property that for each i =
1, . . . , n there is an inner automorphism gi such that g(xi) = gi(xi). Furthermore,
the group SAutn is a subgroup of TAutn singled out by the condition g(x) = x for
x =

∑n
i=1 xi.

In order to discuss the groups KVn and K̂V2 we introduce a Lie group 1-cocycle
j : TAutn → trn which integrates the Lie algebra 1-cocycle div : tdern → trn.

Proposition 5.1. There is a unique map j : TAutn → trn which satisfies the group

cocycle condition

(18) j(gh) = j(g) + g · j(h),

and has the property

(19)
d

ds
j(exp(su))|s=0 = div(u).

Proof. Let g be a semi-direct sum of tdern and trn. The cocycle property of the
divergence implies that the map tdern → g defined by formula u 7→ u + div(u)
is a Lie algebra homomorphism. Define j(exp(u)) by formula exp(u + div(u)) =
exp(j(exp(u))) exp(u). For g = exp(u) and h = exp(v) we have

exp(j(gh))gh = (exp(j(g))g)(exp(j(h))h) = exp(j(g) + g · j(h))gh

which implies (18).
Equations (18) and (19) imply the following differential equation for j:

d

ds
j(exp(su)) = div(u) + u · j(exp(su)).

Given the initial condition j(e) = 0, this equation admits a unique solution,

j(exp(u)) =
eu − 1

u
· div(u)

which proves uniqueness of the cocycle j. �

Remark 5.1. Equation (18) for h = g−1 implies j(g−1) = −g−1 · j(g).

Proposition 5.2. The group KVn is isomorphic to a subgroup of SAutn singled

out by the condition j(g) = 0.

Proof. Let u ∈ kvn. Then, div(u) = 0 implies j(exp(u)) = 0 and exp(u) ∈ KVn. In
the other direction, j(g) = 0 for g = exp(u) implies div(u) = u/(eu − 1) · j(g) = 0,
and u ∈ kvn. �

Proposition 5.3. Let g ∈ K̂V2. Then, j(g) ∈ im(δ).

Proof. Let u ∈ k̂v2. Then, div(u) = tr(f(x) + f(y) − f(x + y)) with f ∈ x2
K[[x]].

Note that u · tr(f(x)) = u · tr(f(y)) = 0 since u acts as an inner derivation on x
and as a (different) inner derivation on y. Furthermore, u · tr(f(x+y)) = 0 because
u(x+ y) = 0. Hence, u · div(u) = 0, and j(exp(u)) = (eu − 1)/u · div(u) = div(u) ∈
im(δ). �
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5.2. Scaling transformations. For 0 6= s ∈ K consider an automorphism As of
the free Lie algebra lien such that As : xi 7→ sxi for all i = 1, . . . , n. We have
As1

As2
= As1+s2

, (As)
−1 = As−1 , and A1 = e. For example, we compute

As(ch(x, y)) = ch(sx, sy) = s chs(x, y).

Note that for g ∈ TAutn an automorphism gs = AsgA
−1
s is also an element of

TAutn. Indeed, g(xi) = gi(xi) = eaxie
−a, where gi is an inner automorphism of

lien given by conjugation by ea for a ∈ lien. Then,

gs(xi) = AsgA
−1
s (xi) = s−1Asg(xi) = eAs(a)xie

−As(a)

proving gs ∈ TAutn. Moreover, since as = As(a) is analytic in s with a0 = 0, we
conclude that gs is also analytic in s with g0 = e. We shall denote the derivative
of gs with respect to the scaling parameter s by ġs.

Proposition 5.4. Let g ∈ TAutn. Then, us := ġsg
−1
s has the property us =

s−1AsuA
−1
s , where u = u1.

Proof. Let l be a derivation of lien defined by the property l(xi) = xi for all i. We

have, ȦsA
−1
s = s−1l, and

us = ġsg
−1
s = s−1(l − gslg

−1
s ) = s−1As(l − glg−1)A−1

s .

Hence, u = u1 = l − glg−1 and us = s−1AsuA
−1
s as required. �

Note that us = s−1(a1(sx1, sx2, . . . ), . . . ) is analytic in s with u0 given by the
degree one component of u. For g ∈ TAutn we denote by κs : TAutn → tdern

the map κs : g 7→ us = s−1As(l − glg−1)A−1
s , and we put κ = κ1. Similarly,

let u ∈ tdern, set us = s−1AsuA
−1
s and denote by Es : tdern → TAutn the map

Es : u 7→ gs defined as a unique solution of the ordinary differential equation
ġsg

−1
s = us with initial condition g0 = e. We denote E = E1.

Proposition 5.5. The maps E and κ are inverse to each other.

Proof. Let g ∈ TAutn and consider u = κ(g). Then, us = s−1AsuA
−1
s = κs(g) and

gs = AsgA
−1
s is a solution of the ordinary differential equation (ODE) ġs = usgs

with initial condition g0 = e. But so does Es(u). Hence, by the uniqueness property
for solutions of ODEs, we have g = E(u) = E(κ(g)). In the other direction, let
u ∈ tdern and consider g = E(u). Then, gs = AsgA

−1
s = Es(u) and κs(g) =

ġsg
−1
s = us. Hence, κ(E(u)) = u as required. �

Automorphisms As extend from lien to Assn and to trn. Note that for u ∈ tdern

and us = s−1AsuA
−1
s we have div(us) = s−1As · div(u). Similarly, for g ∈ TAutn

and gs = AsgA
−1
s we obtain j(gs) = As · j(g).

Proposition 5.6. Let g ∈ TAutn and u = κ(g). Then,

(20)
dj(gs)

ds
= us · j(gs) + div(us).

Proof. We compute

j(gq) = j(gqg
−1
s gs) = j(gqg

−1
s ) + (gqg

−1
s ) · j(gs).

Taking a derivative with respect to q and putting q = s yields the equation (20),
as required. �
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For g = E(u), equation (20) at s = 1 implies the following relation between j(g)
and div(u): l · j(g) = u · j(g) + div(u). By using equation u = l − glg−1 we obtain
glg−1 · j(g) = div(u).

5.3. The generalized Kashiwara-Vergne problem. The generalized Kashiwara-
Vergne (KV) problem is the following question:

Generalized KV problem: Find an element F ∈ TAut2 with the properties

(21) F (x + y) = ch(x, y),

and

(22) j(F ) ∈ im(δ̃).

We shall denote the set of solutions of the generalized KV problem by Sol(K̂V).
For any s ∈ K one can introduce rescaled versions of equations (21) and (22) as

F (x+ y) = chs(x, y) and j(F ) ∈ im(δ̃s). We shall denote the corresponding set of

solutions by Sols(K̂V). For s = 0, Sol0(K̂V) = K̂V2. For all s 6= 0, Sols(K̂V) ∼=

Sol(K̂V) with isomorphism given by the scaling transformation F 7→ Fs = AsFA
−1
s .

Proposition 5.7. Let F ∈ Sol(K̂V) and a ∈ tr1. Then, δ̃a = F · (δa).

Proof. We have, a = tr(f(x)) for some formal power series f . We compute

F · (δa) = F · tr(f(x) − f(x+ y) + f(y))

= tr(f(x) − f(ch(x, y)) + f(y)) = δ̃a.

Here we used that F · tr(f(x)) = tr(f(x)) and F · tr(f(y)) = tr(f(y)) since F acts
as an inner automorphism on x and as a (different) inner automorphism on y. We
also used that F · tr(f(x+ y)) = tr(f(ch(x, y))) because F (x+ y) = ch(x, y). �

The fact that Sol(K̂V) is non empty has been proved in [2]. We shall give an
alternative proof in the end of the paper. In order to preserve the logic of the
presentation, we shall not be using the existence of solutions of the KV problem
until we prove it.

Theorem 5.1. Assume that Sol(K̂V) is nonempty. Then, the group K̂V2 acts on

Sol(K̂V) by multiplications on the right. This action is free and transitive.

Proof. Let F ∈ Sol(K̂V) and g ∈ K̂V2. Then, (Fg)(x + y) = F (g(x + y)) =

F (x + y) = ch(x, y) and j(Fg) = j(F ) + F · j(g). Note that j(F ) ∈ im(δ̃) and,

by Proposition 5.3, j(g) ∈ im(δ). Hence, F · j(g) ∈ im(δ̃) and j(Fg) ∈ im(δ̃). In

conclusion, K̂V2 acts on the set Sol(K̂V) by right multiplications. This action is
free since the multiplication on the right is.

Let F1, F2 ∈ Sol(K̂V) and put g = F−1
1 F2. We have, g(x+y) = F−1

1 (F2(x+y)) =
F−1

1 (ch(x, y)) = x + y and j(g) = j(F−1
1 ) + F−1

1 · j(F2) = F−1
1 · (j(F2) − j(F1)).

Since j(F1), j(F2) ∈ im(δ̃), we have F−1
1 · (j(F2) − j(F1)) ∈ im(δ) and g ∈ K̂V2.

Hence, the action of K̂V2 on Sol(K̂V) is transitive. �

The Kashiwara-Vergne problem was stated in [13] in somewhat different terms.
We shall now establish a relation between our approach and the original formulation
of the KV problem (KV conjecture).
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Theorem 5.2. An element F ∈ TAut2 is a solution of the generalized KV problem

if and only if u = κ(F ) = (A(x, y), B(x, y)) satisfies the following two properties,

(23) x+ y − ch(y, x) = (1 − exp(− adx))A(x, y) + (exp(ady) − 1)B(x, y),

and

(24) div(u) ∈ im(δ̃).

Proof. First, we show that equation F (x + y) = ch(x, y) is equivalent to equation
(d/ds− us) chs(x, y) = 0. Indeed, we have

Fs(x+ y) = AsFA
−1
s (x+ y) = s−1AsF (x+ y) = s−1As ch(x, y) = chs(x, y)

and

us(chs(x, y)) = ḞsF
−1
s (chs(x, y)) = Ḟs(x+ y) =

d

ds
(Fs(x + y)) =

d chs(x, y)

ds
.

In the other direction,

d

ds
F−1

s (chs(x, y)) = F−1
s

(
d

ds
− us

)
chs(x, y) = 0

implies that F−1
s (chs(x, y)) is independent of s, and comparison with the value at

s = 0 gives F−1
s (chs(x, y)) = x+ y or Fs(x+ y) = chs(x, y).

A straightforward calculation (see Lemma 3.2 of [13]) shows that equation (d/ds−
us) chs(x, y) = 0 is equivalent to (23).

Finally, we compare equations (22) and (24). Let F ∈ Sol(K̂V), j(F ) = δ̃(tr(f(x))).
We compute,

div(u) = FlF−1 · j(F ) = FlF−1 · tr(f(x) − f(ch(x, y)) + f(y))
= Fl · tr(f(x) − f(x+ y) + f(y))
= F · tr(φ(x) − φ(x + y) + φ(y))

= tr(φ(x) − φ(ch(x, y)) + φ(y)) ∈ im(δ̃),

where φ = xf ′(x) results from the action of the derivation l : xn 7→ nxn. In

the other direction, assume div(u) ∈ im(δ̃). Then, for us = s−1AsuA
−1
s we have

div(us) ∈ im(δ̃s). Equation (d/ds−us)j(Fs) = div(us) implies d/ds(F−1
s · j(Fs)) =

F−1
s · div(us) ∈ im(δ). Hence, F−1

s · j(Fs) ∈ im(δ) and j(Fs) ∈ im(δ̃s). �

Remark 5.2. Let g be a finite dimensional Lie algebra over K. Then, A,B ∈ lie2
define a pair of formal power series on g× g with values in g which satisfy equation
(23). By applying the adjoint representation to the equation div(u) = δ̃(φ) we
obtain an equality in formal power series on g × g with values in K,

(25) Tr(adx ◦dxA+ ady ◦dyB) = Tr(φ(x) + φ(y) − φ(ch(x, y))).

Here (dxA)(z) = dA(x+ tz, y)/dt|t=0 and (dyB)(z) = dB(x, y+ tz)/dt|t=0. Indeed,
for A ∈ lie2 consider U(x, y, z) = dA(x + tz, y)/dt|t=0 ∈ lie3. It has the form
U = ada(z) for some a ∈ Ass2. We compute (see equation (5)),

a = ∂zU(x, y, z) =

(
d

dt
∂zA(x + tz, y)

)
|t=0 = ∂xA

showing ad(∂xA) = dxA. Similarly, ad(∂yB) = dyB.
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6. Duflo functions

Let F ∈ Sol(K̂V). Then, j(F ) = tr(f(x) − f(ch(x, y)) + f(y)), and div(κ(F )) =
tr(φ(x)−φ(ch(x, y))+φ(y)) for f, φ ∈ x2

K[[x]]. We shall call f(x) a Duflo function
of F . In this Section, we describe the set of formal power series which may arise as
Duflo functions associated to solutions of the KV problem.

Proposition 6.1. Let u ∈ tder2 and assume that it satisfies equations (23) and

(24) with div(u) = δ̃(tr(φ(x))). Then, the even part of the formal power series φ is

given by the following formula

φeven(x) =
1

2
(φ(x) + φ(−x)) =

1

2

∞∑

k=2

Bn

n!
xn =

1

2

(
x

ex − 1
− 1 +

x

2

)
,

where Bn are Bernoulli numbers.

Proof. We follow [3] (see Remark 4.3). Write A(x, y) = α(adx)y + . . . , B(x, y) =
bx+β(adx)y+. . . , where b ∈ K, α, β ∈ K[[x]], and . . . stand for the terms containing
at least two y’s. Replace y 7→ sy in equation (23), and compute the first and second
derivatives in s at s = 0. The first derivative yields

y −
adx

eadx − 1
y = (1 − e− adx)α(adx)y − b[x, y],

and we obtain

α(t) = b
t

1 − e−t
−

t

(et − 1)(1 − e−t)
+

1

1 − e−t
.

Note that elements of lie2 quadratic in the generator y are in bijection with skew-
symmetric formal power series in two variables,

a(u, v) =

∞∑

i,j=0

ai,ju
ivj 7→

∞∑

i,j=0

ai,j [adi
x y, adj

x y]

The second derivative of (23) gives the following equality in formal power series,

1

2

(u+ v)(eu − ev) − (u − v)(eu+v − 1)

(eu+v − 1)(eu − 1)(ev − 1)
= (1−e−(u+v))a2(u, v)+

b

2
(u−v)+(β(v)−β(u)),

where the left hand side corresponds to the second derivative of the Campbell-
Hausdorff series − ch(sy, x), and a2(u, v) represents the second derivative ofA(x, sy).
By putting v = −u in the last equation we obtain,

βodd(t) =
b

2
t−

1

2

t

(et − 1)(1 − e−t)
+

1

4

et + 1

et − 1
.

Here βodd(t) = (β(t) − β(−t))/2.
Finally, consider equation (25) and compute the contribution linear in y (that

is, of the form tr(f(x)y)) on the left hand side and on the right hand side. Since
we only control the odd part of the function β(t), we obtain an equation in odd
formal power series,

βodd(t) − αodd(t) = −(φ′(t))odd = −(φeven)′(t)

which implies

φeven(t) =
1

2

(
t

et − 1
− 1 +

t

2

)
,

as required. �
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Proposition 6.2. Let F ∈ Sol(K̂V) and f ∈ x2
K[[x]] such that j(F ) = δ̃(tr(f(x))).

Then, the even part of f(x) coincides with the function feven(x) = 1
2 ln(ex/2 −

e−x/2)/x), and for every odd formal power series fodd(x) =
∑∞

k=1 f2k+1x
2k+1 there

is an element F ∈ Sol(K̂V) such that j(F ) = δ̃(tr(feven(x) + fodd(x))).

Proof. Let f and φ be the power series in j(F ) = δ̃(tr(f(x))) and div(u) =

δ̃(tr(φ(x))) for u = κ(F ). Then, we have (see the proof of Theorem 5.2) φ(s) =
sf ′(s). By Proposition 6.1, we obtain

feven =

∫
φeven(s)

s
ds =

1

2

∞∑

k=2

Bk

k · k!
sk =

1

2
ln

(
es/2 − e−s/2

s

)
.

Let F ∈ Sol(K̂V) with j(F ) = δ̃(tr(f(x))), and g ∈ K̂V2 with j(g) = δ(tr(h(x))).

Then, Fg ∈ Sol(K̂V) and

j(Fg) = j(F ) + F · j(g) = δ̃(tr(f(x) + h(x))).

Put g = exp(u) for u ∈ k̂v2, and compute j(g) = (eu − 1)/u · div(u) = div(u).
By choosing u = −

∑∞
k=1 h2k+1ν(σ2k+1) we obtain j(g) = div(u) = δ(tr(h(x))) for

h(x) =
∑∞

k=1 h2k+1x
2k+1. Hence, by an appropriate choice of g ∈ K̂V2, one can

make the odd part of the linear combination f(x) + h(x) equal to any given odd
power series without linear term. �

Remark 6.1. The group K̂V2 acts on Sol(K̂V), and this action descends to the

space of formal power series x2
K[[x]] along the map f : Sol(K̂V) → x2

K[[x]]. In
Proposition 6.2 we have used this action to change the odd part of f(F ). Previously,

this action (for the Grothendieck-Teichmüller subgroup GRT ⊂ K̂V2) on the Duflo
functions has been described in [15] (see Theorem 7).

Proposition 6.3. Let F = exp(u) ∈ Sol(K̂V) with u = (a, b) ∈ tder2 such that

a(x, y) = a0y + α(ady)x+ . . .
b(x, y) = b0x+ β(ady)x+ . . . ,

where a0, b0 ∈ K, α, β ∈ sK[[s]], and . . . stand for terms which contain at least

two x. Then, the Duflo function associated to F satisfies equation f ′ = β − α.

Proof. Consider the part of j(F ) = tr(f(x) − f(ch(x, y)) + f(y)) linear in the
generator x. On the one hand, we have

j(F )x−lin = tr(f(x) − f(ch(x, y)) + f(y))x−lin = − tr(f ′(y)x).

On the other hand, we obtain

j(F )x−lin =

(
eu − 1

u
· div(u)

)

x−lin

= div(u)x−lin.

Here we used the fact that linear in x terms cannot arise under the action of elements
of tder2 on tr2. Indeed, such a term would be of the form tr(h(y)[x, y]) for some
formal power series h, and tr(h(y)[x, y]) = tr(h(y)yx− h(y)xy) = 0.

Finally, we compute

div(u)x−lin = tr(x(∂xa) + y(∂yb))x−lin = tr(xα(y) − β(y)x) = tr((α(y) − β(y))x).

Comparison with the first equation yields f ′(y) = β(y) − α(y), as required. �
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In the original formulation of the Kashiwara-Vergne problem the Duflo function
f was assumed to be even.

KV problem: Find an element F ∈ TAut2 such that F (x + y) = ch(x, y) and

j(F ) = 1
2

∑∞
k=2

Bkxk

k·k! = 1
2 ln((ex/2 − e−x/2)/x).

We shall denote the set of solutions of the KV problem by Sol(KV). Note that
the KV problem is equivalent to finding an element u = (A,B) ∈ tder2 which

satisfies equation (23) and the identity div(u) = δ̃
(

1
2 tr

∑∞
k=2

Bkxk

k!

)
.

Remark 6.2. The group KV2 acts on Sol(KV) by right multiplications. This
action is free and transitive. The proof of this statement is completely analogous
to the proof of Theorem 5.1.

7. Pentagon equation

In this Section we establish a relation between the Kashiwara-Vergne problem
and the pentagon equation introduced in [7]. Let Φ ∈ TAut3. We say that Φ
satisfies the pentagon equation if

(26) Φ12,3,4Φ1,2,34 = Φ1,2,3Φ1,23,4Φ2,3,4.

Proposition 7.1. Let F ∈ Sol(K̂V). Then,

(27) Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23

is an element of KV3, and it satisfies the pentagon equation.

Proof. First, we compute

Φ(x+ y + z) = (F 12,3)−1(F 1,2)−1F 2,3F 1,23(x+ y + z)
= (F 12,3)−1(F 1,2)−1F 2,3(ch(x, y + z))
= (F 12,3)−1(F 1,2)−1(ch(x, ch(y, z)))
= (F 12,3)−1(ch(x + y, z))
= x+ y + z.

Hence, Φ ∈ SAut3. Next, we rewrite the defining equation for Φ as F 1,2F 12,3Φ =
F 2,3F 1,23 and apply the cocycle j to both sides to get

j(F 1,2) + F 1,2 · j(F 12,3) + (F 1,2F 12,3) · j(Φ) = j(F 2,3) + F 2,3 · j(F 1,23).

Since j(F ) = tr(f(x) − f(ch(x, y)) + f(y)), we have

j(F 1,2) + F 1,2 · j(F 12,3) = tr(f(x) + f(y) − f(ch(x, y)))
+ F 1,2 · tr(f(x + y) − f(ch(x+ y), z) + f(z))
= tr(f(x) + f(y) + f(z) − f(ch(ch(x, y), z)))

Similarly, we obtain

j(F 2,3) + F 2,3 · j(F 1,23) = tr(f(y) − f(ch(y, z)) + f(z))
+ F 2,3 · tr(f(x) − f(ch(x, y + z)) + f(y + z))
= tr(f(x) + f(y) + f(z) − f(ch(x, ch(y, z)))).

We conclude (F 1,2F 12,3) · j(Φ) = 0, j(Φ) = 0 and Φ ∈ KV3.
The pentagon equation is satisfied by substituting the expression for Φ into

the equation, and by using that for Φ ∈ KV3 ⊂ SAut3 we have F 123,4Φ1,2,3 =
Φ1,2,3F 123,4 and F 1,234Φ2,3,4 = Φ2,3,4F 1,234. �
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Let F1 ∈ Sol(K̂V) and Φ1 be the corresponding solution of the pentagon equa-

tion. Consider another element F2 ∈ Sol(K̂V). By Theorem 5.1, F2 = F1g for some

g ∈ K̂V2. The corresponding solution of the pentagon equation reads

(28)
Φ2 = (F 12,3

2 )−1(F 1,2
2 )−1F 2,3

2 F 1,23
2

= (g12,3)−1(F 12,3
1 )−1(g1,2)−1(F 1,2

1 )−1F 2,3
1 g2,3F 1.23

1 g1,23

= (g12,3)−1(g1,2)−1Φ1g
2,3g1,23.

Equation (28) defines an action of K̂V2 on solutions of the pentagon equation with
values in KV3. Actions of this type are called Drinfeld twists.

Proposition 7.2. Let F1, F2 ∈ Sol(K̂V) and assume that they give rise to the same

solution Φ of the pentagon equation. Then, F2 = F1 exp(λt) for some λ ∈ K.

Proof. First, note that for g = exp(λt) we have for all Φ ∈ KV3

(g12,3)−1(g1,2)−1Φg2,3g1,23 = e−λcΦeλc = Φ,

where c = t1,2 + t1,3 + t2,3 is a central element in sder3 and in kv3.
The degree one component of k̂v2 is spanned by t, and t is central in k̂v2. Hence,

one can represent g = F−1
1 F2 in the form g = exp(λt) exp(u), where u =

∑∞
k=2 uk ∈

k̂v2. Let Φ be a solution of the pentagon equation which corresponds to both F1

and F2. Let k0 be the lowest degree such that uk0
6= 0. Then, equation Φ =

(g12,3
2 )−1(g1,2

2 )−1Φg2,3g1,23 implies duk0
= 0, and by Theorem 3.1 we have uk0

= 0
which implies u = 0 and g = exp(λt), as required. �

Proposition 7.3. Let Φ = exp(φ) ∈ TAut2 be a solution of the pentagon equation,

where φ =
∑∞

k=1 φk with φk ∈ tder3 homogeneous of degree k. Then, φ1 = 0 and

φ2 = (α[y, z], β[z, x], γ[x, y]).

Proof. The degree one component of the pentagon equation reads dφ1 = 0. Since
the degree one component of H3(tder, d) vanishes, we have φ1 = df for a degree
one element f ∈ tder2. However, the degree one component of tder2 is spanned
by r = (0, x) and t = (y, x), and both r and t are in the kernel of d. Hence,
φ1 = 0. This implies that the degree two component of the pentagon equation is
of the form, dφ2 = 0. Then (see the proof of Theorem 3.1), φ2 is expressed as
(α[y, z], β[z, x], γ[x, y]) for some α, β, γ ∈ K. �

Note that H3(tder, d) is one-dimensional, and the cohomology lies in degree two.
One can choose the isomorphismH3(tder, d) ∼= K in such a way that it is represented
by the map π : φ2 = (α[y, z], β[z, x], γ[x, y]) 7→ α+ β + γ.

Proposition 7.4. Let F = exp(u) exp(sr/2) exp(αt) ∈ TAut2, where u is an

element of tder2 of degree greater of equal to two. Assume that the expression

Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23 is an element of KV3, and denote π(φ2) = λ.

Then, λ = s2/8 and F ∈ Sols(K̂V).

Proof. Note that the degree two component of φ = ln(Φ) is given by

φ2 = du2+
s2

8
([r2,3, r1,23]+[r12,3, r1,2]) = du2+

s2

8
[r2,3, r1,2] = du2+

s2

8
([y, z], 0, 0).

Here we used the classical Yang-Baxter equation of Proposition 3.2. In conclusion,
λ = π(φ2) = s2/8.
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Denote χ(x, y) = F (x+ y) = x+ y + s
2 [x, y] + . . . , where . . . stand for elements

of degree greater or equal to three. Since Φ(x+ y + z) = x+ y + z, we have

χ(x, χ(y, z)) = F 2,3F 1,23(x+ y + z) = F 1,2F 12,3(x+ y + z) = χ(χ(x, y), z).

By Proposition 2.1, this implies χ(x, y) = chs(x, y). Denote b(x, y) = j(F ) ∈ tr2.
By applying j to the equality F 2,3F 1,23 = F 1,2F 12,3Φ we obtain,

b(y, z) + F 2,3 · b(x, y + z) = b(x, y) + F 1,2 · b(x+ y, z).

Equivalently, δ̃s(b) = 0 which implies, by Proposition 2.2, b ∈ im(δ̃s) and F ∈

Sols(K̂V). �

Theorem 7.1. Let Φ ∈ KV3 be a solution of the pentagon equation with π(φ2) = λ
and let s ∈ K be a square root of 8λ, s2/8 = λ. Then, there is a unique element

F ∈ Sols(K̂V) such that F = exp(u) exp(sr/2) ∈ TAut2, where u is an element of

tder2 of degree greater of equal to two, and Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23.

Proof. Our task is to find f =
∑∞

k=1 fk ∈ tder2 with the degree one component
f1 = sr/2 such that F = exp(f) solves equation Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23.
In degree two, it implies,

df2 +
s2

8
([y, z], 0, 0) = φ2.

Recall that dφ2 = 0 and π(φ2) = λ = s2/8. Hence, this equation admits a solution,
and it is unique since d : tder2 → tder3 has no kernel in degrees greater than one.

Assume that we found Fn ∈ TAut2 such that Φn = (F 12,3
n )−1(F 1,2

n )−1F 2,3
n F 1,23

n

is equal to Φ modulo terms of degree greater than n. Then, F 2,3
n F 1,23

n (x+ y+ z) =
F 1,2

n F 12,3
n (x + y + z) modulo terms of degree greater than n + 1, and Fn(x, y) =

chs(x, y) modulo terms of degree greater than n+1. Since F 123,4
n Φ1,2,3

n = Φ1,2,3
n F 123,4

n

and F 1,234
n Φ2,3,4

n = Φ2,3,4
n F 1,234

n modulo terms of degree greater than n+ 1, Φn sat-
isfies the pentagon equation modulo terms of degree greater than n + 1. Write
Φn = exp(

∑∞
k=2 ψk), where ψk = φk for k ≤ n and denote ϕ = φn+1 − ψn+1.

The pentagon equation for Φ and the pentagon equation modulo terms of degree
greater then n + 1 for Φn imply dϕ = 0. Hence, by Theorem 3.1, ϕ = du for
a unique element u ∈ tder2 of degree n + 1. Put Fn+1 = Fn exp(u). It satis-

fies equation Φ = (F 12,3
n+1 )−1(F 1,2

n+1)
−1F 2,3

n+1F
1,23
n+1 modulo terms of degree greater

than n + 1. By induction, we construct a unique F which solves equation Φ =
(F 12,3)−1(F 1,2)−1F 2,3F 1,23 and has f1 = sr/2, as required. By Proposition 7.4,

the element F solves the KV problem, F ∈ Sols(K̂V). �

Theorem 7.1 implies that the Kashiwara-Vergne problem has solutions if an
only if the pentagon equation has solutions Φ ∈ KV3 with π(φ2) = 1/8. The next

proposition provides a tool extracting the Duflo function of an element F ∈ Sol(K̂V)
from the corresponding solution of the pentagon equation.

Proposition 7.5. Let Φ = exp(φ) ∈ KV3 be a solution of the pentagon equation

with π(φ2) = 1/8, and let F ∈ Sol(K̂V) be a solution of equation (27). Denote

φ = (A,B,C), and B(x, 0, z)x−lin = h(adz)x for h ∈ xK[[x]]. Then, the Duflo

function of F satisfies equation f ′(x) = h(x).
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Proof. Let F = exp(u) with u = (a, b). Put a(x, y) = a0y + α(ady)x + . . . and
b(x, y) = b0y+β(ady)x+ . . . . Then, by Proposition 6, the Duflo function associated
to F is a solution of equation f ′ = β − α.

Denote

ul = u1,2 + u12,3 = (a(x, y) + a(x + y, z), b(x, y) + a(x+ y, z), b(x+ y, z))
ur = u2,3 + u1,23 = (a(x, y + z), a(y, z) + b(x, y + z), b(y, z) + b(x, y + z)),

and observe that φ = ch(−ul, ur). The contribution of ur − ul in B(x, 0, z)x−lin is
equal to β(adz)x−α(adz)x. Note that the linear in z contributions in both ul and
ur are of the form (z, z, 0). Since

[(z, z, 0), (0, h(adz)x, 0)] = (0, h(adz)[x, z] + [z, h(adz)x], 0) = 0,

we conclude that the nonlinear terms in the Campbell-Hausdorff series ch(−ul, ur)
do not contribute in B(x, 0, z)x−lin, and h(x) = β(x) − α(x). Hence, f ′(x) = h(x),
as required. �

8. Z2-symmetry of the KV problem and hexagon equations

In this Section we introduce an involution on τ the set of solutions of the gen-
eralized KV problem, and show that the corresponding solutions of the pentagon
equation verify a pair of hexagon equations.

8.1. The automorphism R and the Yang-Baxter equation. Let R ∈ TAut2
be an automorphism of lie2 defined on generators by R(x) = e− adyx,R(y) = y.
Note that R = exp(r) for r = (y, 0) ∈ tder2, and

R (ch(y, x)) = ch(y, exp(− ady)x) = ch(x, y).

Denote by θ the inner derivation of lie2 with generator ch(x, y). That is, for a ∈ lie2
we have θ(a) = [a, ch(x, y)]. Note that the derivation t = (y, x) ∈ tder2 is an
inner derivation of lie2 with generator x+ y. Indeed, t(x) = [x, y] = [x, x + y] and
t(y) = [y, x] = [y, x + y]. Let F ∈ TAut2 be a solution of the first KV equation,
F (x+ y) = ch(x, y). Then, FtF−1 = θ. Indeed, for a ∈ lie2 we have

FtF−1(a) = F ([F−1(a), x+ y]) = [a, F (x+ y)] = [a, ch(x, y)] = θ(a).

Proposition 8.1. RR2,1 = exp(θ).

Proof. Note that R2,1(x) = x and R2,1(y) = e− adxy. We compute,

RR2,1(x) = R(x) = exp(− ady)x = exp(− ad(ch(x, y)))x,

and

RR2,1(y) = R(exp(− adx)y) = exp(− ad(exp(− ady)x))y = exp(− ch(x, y))y,

as required. �

Proposition 8.2. The element R satisfies the Yang-Baxter equation,

R1,2R1,3R2,3 = R2,3R1,3R1,2.

Proof. In components, we have R1,2 = (exp(− ady), 1, 1), R1,3 = (exp(− adz), 1, 1)
and R2,3 = (1, exp(− adz), 1). One easily computes both the left hand side and
the right hand side of the Yang-Baxter equation on generators y and z, z 7→ z and
y 7→ exp(− adz)y. We compute the action of the left hand side on x:

R1,2R1,3R2,3(x) = R1,2R1,3(x) = R1,2(exp(− adz)x) = exp(− adz) exp(− ady)x,
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and the action of the right hand side,

R2,3R1,3R1,2(x) = R2,3R1,3(exp(− ady)x)
= R2,3(exp(− ady) exp(− adz)x)
= exp(− adz) exp(− ady)x

which completes the proof. �

Proposition 8.3. R12,3 = R1,3R2,3. Let F ∈ TAut2 be a solution of equation

F (x+ y) = ch(x, y). Then, F 2,3R1,23(F 2,3)−1 = R1,2R1,3.

Proof. For the first equation, note that both sides are represented by the automor-
phism (exp(− adz), exp(− adz), 1) ∈ TAut3.

For the second equation, both the left hand side and the right hand side preserve
generators y and z, y 7→ y, z 7→ z. It remains to compute the action on x:

F 2,3R1,23(F 2,3)−1(x) = F 2,3R1,23(x) = F 2,3(exp(− ady+z)x) = exp(− ch(y, z))x,

and the same for the right hand side

R1,2R1,3(x) = R1,2(exp(− adz)x) = exp(− adz) exp(− ady)x = exp(− ch(y, z))x,

as required. �

8.2. Involution on Sol(K̂V). In this Section we introduce and study a certain
involution on the set of solutions of the KV problem.

Proposition 8.4. Let F ∈ Sol(K̂V). Then, τ(F ) = RF 2,1e−t/2 is a solution of

the KV problem, τ(F ) ∈ Sol(K̂V). The map τ is an involution, τ2 = 1.

Proof. We compute,

τ(F )(x + y) = RF 2,1e−t/2(x+ y) = RF 2,1(x+ y) = R(ch(y, x)) = ch(x, y).

Furthermore,

j(τ(F )) = j(RF 2,1e−t/2) = R · j(F 2,1).

Here we used that div(r) = div(t) = 0 and j(R) = j(exp(−t/2)) = 0. Let f ∈
x2

K[[x]] such that j(F ) = tr(f(x)− f(ch(x, y)) + f(y)). Then, j(F 2,1) = tr(f(x)−
f(ch(y, x)) + f(y)) and R · j(F 2,1) = tr(f(x) − f(ch(x, y)) + f(y)) = j(F ). Hence,
τ(F ) is a solution of the KV problem.

Finally,

τ2(F ) = Rτ(F )2,1e−t/2 = RR2,1Fe−t = eθFe−t = F,

where we used t2,1 = t, RR2,1 = exp(θ) and FtF−1 = θ. We conclude that τ2 = 1,

and τ defines an involution on Sol(K̂V). �

Proposition 8.5. Let F ∈ Sol(K̂V) and let ΦF be the corresponding solution of

the pentagon equation. Then,

Φτ(F ) = (Φ3,2,1
F )−1.

Proof. We compute,

Φτ(F ) = et12,3/2(F 3,21)−1(R12,3)−1et1,2/2(F 2,1)−1(R1,2)−1R2,3F 3,2e−t2,3/2R1,23F 32,1e−t1,23/2

= ec/2(F 3,21)−1(R12,3)−1(F 2,1)−1(R1,2)−1R2,3F 3,2R1,23F 32,1e−c/2

= ec/2(F 3,21)−1(F 2,1)−1(R2,3)−1(R1,3)−1(R1,2)−1R2,3R1,3R1,2F 3,2F 32,1e−c/2

= ec/2(F 3,21)−1(F 2,1)−1F 3,2F 32,1e−c/2 = ec/2(Φ3,2,1)−1e−c/2 = (Φ3,2,1)−1.
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Here in passing from the first to the second line we used that g1,2h12,3 = h12,3g1,2

for g ∈ SAut2, h ∈ TAut2, and the definition of the element c = t1,2+t1,3+t2,3 ∈ t3;
Proposition 8.3 in the passage from the second to the third line; and finally the
Yang-Baxter equation (Proposition 8.2) and the fact that c is central in kv3 in the
passage from the third to the fourth line. �

Proposition 8.6. Let F ∈ Sol(K̂V) and κ(F ) = (A(x, y), B(x, y)) ∈ tder2. Then,

(29)

κ(τ(F )) =

(
eadxB(y, x) +

1

2
(ch(x, y) − x), e− adyA(y, x) −

1

2
(ch(x, y) − y)

)
.

Proof. We compute,

κ(τ(F )) =
dτ(F )s

ds
|s=1 τ(F )−1 = r+R

dF 2,1
s

ds
|s=1(F

2,1)−1R−1−
1

2
RF 2,1t(F 2,1)−1R−1,

where we used that dRsR
−1
s = r = (y, 0) ∈ tder2. In the last term, F 2,1t(F 2,1)−1

is the inner derivation with generator ch(y, x), and RF 2,1t(F 2,1)−1R−1 is an inner
derivation with generator ch(x, y). With our normalization condition, it is repre-
sented by (ch(x, y) − x, ch(x, y) − y) ∈ tder2.

Finally, for the middle term Rκ(F )2,1R−1 we compute,

R(A,B)2,1R−1(x) = R(B(y, x), A(y, x))eady(x)
= R(eady [x,B(y, x)] + eady [A(y, x), x] − [A(y, x), eady(x)])
= [x,B(y, x) + (e− ady − 1)A(y, x)]
= [x, eadxB(y, x) + ch(x, y) − x− y].

Here in the passage to the last line we have used equation (23) (with x and y
exchanged). For the action on y we compute,

R(A,B)2,1R−1(y) = R(B(y, x)A(y, x))(y) = R([y,A(y, x)]) = [y, e− adyA(y, x)].

By adding up all three terms we obtain,

κ(τ(F )) = (eadxB(y, x) + ch(x, y) − x− y, e− adyA(y, x))
+ (y, 0) − 1

2 (ch(x, y) − x, ch(x, y) − y)
= (eadxB(y, x) + 1

2 (ch(x, y) − x), e− adyA(y, x) − 1
2 (ch(x, y) − y),

as required. �

Remark 8.1. Symmetry (29) has been introduced in [13] (see discussion after
Proposition 5.3).

8.3. Symmetric solutions of the KV problem.

Definition 8.1. An element F ∈ Sol(K̂V) is called a symmetric solution of the
generalized Kashiwara-Vergne conjecture if τ(F ) = F .

We shall denote the set of symmetric solutions by Solτ (K̂V). Since the map
κ : TAut2 → tder2 is a bijection, τ(F ) = F if and only if κ(τ(F )) = κ(F ). That is,
κ(F ) = (A(x, y), B(x, y)) satisfies the (equivalent) linear equations

A(x, y) = eadxB(y, x) +
1

2
(ch(x, y) − x) , B(x, y) = e− adyA(y, x) −

1

2
(ch(x, y) − y).

Since equations (23) and (24) are linear in A and B, one can average an arbitrary

solution to obtain a symmetric solution F̃ with κ(F̃ ) = (κ(F ) + κ(τ(F )))/2.
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The involution u 7→ u2,1 acts on the Lie algebra k̂v2, and it lifts to the group

K̂V2. We shall denote the corresponding invariant subalgebra by k̂v
sym

2 ⊂ k̂v2 and

the invariant subgroup by K̂V
sym

2 ⊂ K̂V2.

Proposition 8.7. The group K̂V
sym

2 acts on the set Solτ (K̂V) by multiplications

on the right. This action is free and transitive.

Proof. Let g ∈ K̂V
sym

2 and F ∈ Solτ (K̂V). By Theorem 5.1, Fg ∈ Sol(K̂V). By
applying τ we obtain

τ(Fg) = RF 2,1g2,1e−t/2 = RF 2,1e−t/2g = τ(F )g = Fg.

Hence, Fg ∈ Solτ (K̂V).

Consider two elements F1, F2 ∈ Solτ (K̂V). We denote g = F−1
1 F2 and compute

g2,1 = (F−1
1 F2)

2,1 = (R−1F1e
t/2)−1(R−1F2e

t/2) = e−t/2(F−1
1 F2)e

t/2 = e−t/2get/2 = g,

as required. �

Remark 8.2. Note that the element t = (y, x) as well as the image of the injection

ν : grt → k̂v2 is contained in k̂v
sym

2 . In fact, it is not known whether any non-

symmetric elements of k̂v2 exist. If correct, Conjecture stated in the end of Section 4

would imply k̂v2 = k̂v
sym

2 .

Proposition 8.8. Let F ∈ Solτ (K̂V), and let Φ ∈ KV3 be the corresponding

solution of the pentagon equation. Then,

(30) Φ1,2,3Φ3,2,1 = e,

(31) e(t
1,3+t2,3)/2 = Φ2,1,3et1,3/2(Φ2,3,1)−1et2,3/2Φ3,2,1

and

(32) e(t
1,2+t1,3)/2 = (Φ1,3,2)−1et1,3/2Φ3,1,2et1,2/2(Φ3,2,1)−1

Proof. Equation (30) follows by Proposition 8.5. In order to prove equation (31)
recall that R12,3 = R1,3R2,3 = (exp(− adz), exp(− adz), 1) ∈ TAut3. Furthermore,
this automorphism commutes with g1,2 for any g ∈ TAut2. In particular, we have
F 2,1R12,3(F 2,1)−1 = R1,3R2,3. By substituting R = Fet/2(F 2,1)−1 we obtain,

F 2,1R12,3(F 2,1)−1 = F 2,1F 21,3e(t
1,2+t1,3)/2(F 3,12)−1(F 2,1)−1,

and

R1,3R2,3 = F 1,3et1,3/2(F 3,1)−1F 2,3et2,3/2(F 3,2)−1

= F 1,3F 2,13et1,3/2(F 2,31)−1(F 3,1)−1F 2,3F 23,1et2,3/2(F 32,1)−1(F 3,2)−1.

A comparison of these two equations yields equation (31). Equation (32) follows by
applying the (13)-permutation to equation (31) and by using the inversion formula
(30). �

Remark 8.3. Equations (31) and (32) are called as hexagon equations. They were
first introduced in [7] (see equations (2.14a) and (2.14b)).
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9. Associators

In this Section we consider joint solutions of pentagon and hexagon equations
called associators (with values in the group KV3). We show that Drinfeld’s associ-
ators defined in [7] make part of this set, and we use this fact to give a new proof
of the KV conjecture.

9.1. Associators with values in KV3 and Drinfeld’s associators.

Definition 9.1. An element Φ ∈ KV3 is an associator if it satisfies the pentagon
equation (26), hexagon equations (31) and (32) and the inversion property (30).

Proposition 9.1. Let Φ = exp(φ) ∈ KV3 be an associator. Then, π(φ2) = 1/8.

Proof. The degree two component of the hexagon equation (31) reads

1

8
[t1,3, t2,3] + φ2,1,3

2 − φ2,3,1
2 + φ3,2,1

2 = 0.

Note that [t1,3, t2,3] = ([y, z], [z, x], [x, y]) which implies π([t1,3, t2,3]) = 3. Also

observe that π(φ2,3,1
2 ) = π(φ2) and π(φ2,1,3

2 ) = π(φ3,2,1
2 ) = −π(φ2). We conclude

that 3π(φ2) = 3/8 and π(φ2) = 1/8, as required. �

Proposition 9.2. Let Φ = exp(φ) ∈ KV3 be a solution of equations (26) and

(30) with π(φ2) = 1/8. Then, each F ∈ Sol(K̂V) which verifies equation (27) is a

symmetric solution of the KV problem, F ∈ Solτ (K̂V).

Proof. Theorem 7.1 implies that equation (27) admits solutions F ∈ Sol(K̂V). By

Proposition 8.5, Φτ(F ) = (Φ3,2,1
F )−1 = ΦF . Hence, by Proposition 7.2, τ(F ) =

F exp(λt) for some λ ∈ K. The degree one component of this equation reads

r+f2,1
1 −t/2 = f1+λt. Since f1 = r/2+αt for some α ∈ K, we have r+f2,1

1 −f1 = t/2
and λ = 0. In conclusion, τ(F ) = F , as required. �

Recall that by Proposition 3.3 Lie algebras tn inject into kvn. In particular, t3
injects into kv3, and the corresponding group T3 is a subgroup of KV3.

Definition 9.2. An associator Φ ∈ KV3 is called a Drinfeld’s associator if Φ ∈ T3.

Drinfeld’s associators can be defined without referring to the Lie algebras tdern

and kvn since both simplicial and coproduct maps restrict to Lie subalgebras tn in
a natural way. In [6] Drinfeld proved the following theorem:

Theorem 9.1. The set of Drinfeld’s associators is non empty.

This implies the following result:

Theorem 9.2. The set of symmetric solutions of the KV problem Solτ (K̂V) is non

empty.

Proof. Each Drinfeld’s associator Φ = exp(φ) is an associator with values in KV3

with π(φ2) = 1/8. Then, by Theorem 7.1, there is an element F = exp(f) ∈ TAut2
with f1 = r/2 which solves equation (27). By Proposition 7.4 this automorphism is
a solution of the KV problem, and by Proposition 9.2 this solution is symmetric. �

Remark 9.1. The KV problem has been settled in [2]. The solution is based on
the Kontsevich deformation quantization scheme [14], and on the earlier work of
the second author [21]. Theorem 9.2 gives a new proof of the KV conjecture by
reducing it to the existence theorem for Drinfeld’s associators.
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Proposition 9.3. Let Φ = exp(φ) ∈ T3 be a Drinfeld’s associator, and let F ∈

Sol(K̂V) be a solution of the KV problem which satisfies equation (27). Write

φ = h(adt2,3)t1,2 + . . . , where h ∈ xK[[x]], and . . . stand for terms which contain at

least two generators t1,2. Then, the Duflo function associated to F satisfies equation

f ′(x) = h(x).

Proof. By putting y = 0 we obtain t1,2 = (y, x, 0) 7→ (0, x, 0) and t2,3 = (0, z, y) 7→
(0, z, 0). Hence,

φ(t1,2, t2,3)y=0 = (0, φ(x, z), 0).

In particular, for φ = (A,B,C), we have B(x, 0, z)x−lin = h(adz)x. Then, by
Proposition 7.5, we obtain f ′(x) = h(x), as required. �

Example 9.1. Consider the Knizhnik-Zamolodchikov associator (with values in
T3) constructed in Drinfeld. Equation (2.15) of [7] yields the function h(x):

h(x) = −

∞∑

n=2

ζ(n)

(2πi)n
xn−1.

Note that our associators are obtained by taking an inverse of associators the in
Drinfeld’s paper. The Duflo function corresponding to the Knizhnik-Zamolodchikov
associator is given by

f(x) = −
∞∑

n=2

ζ(n)

n(2πi)n
xn =

γ

2πi
x− ln

(
Γ

(
1 −

x

2πi

))
.

Here γ is the Euler’s constant, and the term γx/2πi cancels the linear part in the
logarithm of the Γ-function. Formula for f(x) matches (up to a sign change) the
expression ln(Fnice(x)) in [15].

9.2. Actions of the group GRT. Let Lien be a group associated to the Lie algebra
lien (such that a · b = ch(a, b)). Then, one can view the Grothendieck-Teichmüller
group GRT as a subset of Lie2 defined by a number of relations (see Section 5 of
[7]), and equipped with the new multiplication,

(h1 ∗GRT h2)(x, y) = h1(x, h2(x, y)yh
−1
2 (x, y))h2(x, y).

Remark 9.2. Note that we have chosen to act on the second argument of the
function h rather than on the first one (as in [7]).

Let ψ ∈ grt and consider a one parameter subgroup of GRT defined by ψ,
hs = expGRT(sψ). Write ht = ht−s ∗GRT hs and differentiate in t at t = s to obtain

dhs(x, y)

ds
= ψ(x, hs(x, y)yhs(x, y)

−1)hs(x, y).

This differential equation together with the initial condition h0(x, y) = 1 defines
the exponential function expGRT in a unique way.

Proposition 9.4. Let ψ ∈ grt, h = expGRT(ψ) ∈ GRT and g = exp(ν(ψ)) ∈ K̂V2.

Then,

ĝ = (g12,3)−1(g1,2)−1g2,3g1,23 = h(t1,2, t2,3) ∈ KV3 .

Proof. First, observe that for g ∈ SAut2, g
1,2 commutes with g12,3, and g2,3 com-

mutes with g1,23. Hence, the maps g 7→ gl = g1,2g12,3 and g 7→ gr = g2,3g1,23 are
group homomorphisms mapping SAut2 to SAut3.
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Next, replace ψ by sψ and consider the derivative in s of ĝs = (gl
s)

−1gr
s :

dĝs

ds = (gl
s)

−1
(

dgr
s

ds (gr
s)

−1 −
dgl

s

ds (gl
s)

−1
)
gr

s

= (gl
s)

−1(dν(ψ))gr
s

= (gl
s)

−1ψ(t1,2, t2,3)gr
s

= ψ(t1,2, (gl
s)

−1t2,3gl
s)(g

l
s)

−1gr
s

= ψ(t1,2, (gl
s)

−1gr
st

2,3(gr
s)

−1gl
s)ĝs

= ψ(t1,2, ĝst
2,3(ĝs)

−1)ĝs.

Obviously, ĝ0 = e ∈ KV3. We conclude that h(t1,2, t2,3) and ĝ satisfy the same first
order linear ordinary differential equation with the same initial condition. Hence,
they coincide, as required. �

The Lie algebra homomorphism ν : grt → k̂v2 gives rise to a subgroup of K̂V2

isomorphic to GRT. The group K̂V2 acts on the set of solutions of the KV problem,
and on the set of associators with values in KV3 (see equation (28)). In [7] (see
Section 5) Drinfeld defines a free and transitive action of the group GRT on the set
of associators with values in T3. This action is given by the following formula,

(33) g : Φ(t1,2, t2,3) 7→ Φ(t1,2, gt2,3g−1)g,

where g = expGRT(ψ) ∈ GRT and Φ ∈ T3 are viewed as elements of the group
Lie2(t

1,2, t2,3). The following proposition relates these two actions.

Proposition 9.5. When restricted to the set of Drinfeld’s associators, the action

of the group GRT on associators with values in KV3 coincides with the canonical

action (33).

Proof. Let g ∈ K̂V2 and rewrite the action (28) on Φ(t1,2, t2,3) ∈ T3 as follows,

Φ · g = (g12,3)−1(g1,2)−1Φ(t1,2, t2,3)g2,3g1,23 = Φ(t1,2, ĝt2,3ĝ−1)ĝ,

for ĝ = (g12,3)−1(g1,2)−1g2,3g1,23. Let ψ ∈ grt and g = exp(ν(ψ)). Then, by
Proposition 9.4 we have ĝ = (expGRT(ψ))(t1,2, t2,3), and the action (28) coincides
with the canonical action (33). �

Remark 9.3. If Conjecture of Section 4 is correct, we have K̂V2
∼= Kt× ν(GRT),

where the additive group Kt injects into K̂V2 via the exponential map, λt 7→

exp(λt). In particular, this implies K̂V2 = K̂V
sym

2 since both Kt and ν(GRT)

are contained in K̂V
sym

2 . Note that the action of Kt on associators is trivial, and
the action of GRT on the set of Drinfeld’s associators is transitive. The action of
K̂V

sym

2 on associators with values KV3 is also transitive, and we conclude that all
associators with values in KV3 are Drinfeld’s associators.

Remark 9.4. For Drinfeld’s associators, Furusho [12] showed that the hexagon
equations (31), (32) and the inversion property (30) follow from the pentagon equa-
tion and the normalization condition π(φ2) = 1/8. In the case of associators with
values in KV3, Proposition 9.2 shows that the hexagon equations (31), (32) follow
from the pentagon equation, the inversion property and the normalization condi-

tion π(φ2) = 1/8. If we assumed K̂V2 = K̂V
sym

2 , the inversion property would
be automatic, and we would get the analogue of Furusho’s result for associators
with values in KV3. If Conjecture of Section 4 holds true, we recover the Furusho’s
result.
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Appendix: proof of Proposition 4.2

In this Appendix we give a proof of Proposition 4.2. It is inspired by the proof
of Proposition 5.7 in [7].

Denote dΨ = (a, b, c). We have,

a = −ψ(−x− y, x) + ψ(−x− y − z, x) − ψ(−x− y − z, x+ y),
b = −ψ(−x− y, y) + ψ(−x− y − z, y + z) − ψ(−x− y − z, x+ y) + ψ(−y − z, y),
c = ψ(−x− y − z, y + z) − ψ(−x− y − z, z) + ψ(−y − z, z).

Let g be the semi-direct sum of tder3 and lie3. The following formulas define an
injective Lie algebra homomorphism of t4 to g:

t1,2 7→ (y, x, 0) ∈ tder3, t1,3 7→ (z, 0, x) ∈ tder3, t2,3 7→ (0, z, y) ∈ tder3,
t1,4 7→ x ∈ lie3, t2,4 7→ y ∈ lie3, t3,4 7→ z ∈ lie3 .

Indeed, t1,2, t1,3 and t2,3 span a Lie subalgebra of tder3 isomorphic to t3, and x, y
and z span an ideal of t4 isomorphic to a free Lie algebra with three generators. It
remains to check the Lie brackets between generators of these two Lie subalgebras.
For instance, we compute,

[t1,2, t3,4] = t1,2(z) = 0, [t1,2, t2,4] = t1,2(y) = [y, x] = [t2,4, t1,4],

as required.
Note that (dΨ)(x) is the image of the following element of t4,

[t1,4,−ψ(−t1,4 − t2,4, t1,4) + ψ(−t1,4 − t2,4 − t3,4, t1,4)
− ψ(−t1,4 − t2,4 − t3,4, t1,4 + t2,4)]
= [t1,4,−ψ(t1,2, t1,4) + ψ(t1,2 + t1,3 + t2,3, t1,4) − ψ(t1,2 + t1,3 + t2,3, t1,4 + t2,4)]
= [t1,4,−ψ(t1,2, t1,4) + ψ(t1,2 + t1,3, t1,4) − ψ(t1,3 + t2,3, t1,4 + t2,4)]
= [t1,4,−ψ(t2,3, t1,2 + t2,4) + ψ(t2,3, t1,2)]
= [t1,4, ψ(t2,3, t1,2)] = [ψ(t1,2, t2,3), t1,4].

Here in passing from the first to the second line we used the properties of central
elements in t3 and t4. For instance, t1,2 + t1,4 + t2,4 is central in the Lie subalgebra
(isomorphic to t3) spanned by t1,2, t1,4 and t2,4. In the passage from the second to
the third line we used the defining relations of the Lie algebra t4. For instance, in
the second term we used that t2,3 has a vanishing bracket with t1,4 and t1,2 + t1,3.
In the passage from the second to the third line we used a (3214) permutation of
the equation (15). Finally, in the last passage we again used the defining relations
of t4, and in particular the fact that t1,4 has a vanishing bracket with t2,3 and with
t1,2 + t2,4. In conclusion, we have

dΨ(x) = ψ(t1,2, t2,3)(x).

Similarly, (dΨ)(y) is the image of the following element,

[t2,4,−ψ(−t1,4 − t2,4, t2,4) + ψ(−t1,4 − t2,4 − t3,4, t2,4 + t3,4)
− ψ(−t1,4 − t2,4 − t3,4, t1,4 + t2,4) + ψ(−t2,4 − t3,4, t2,4)]
= [t2,4,−ψ(t1,2, t2,4) + ψ(t1,2 + t1,3 + t2,3, t2,4 + t3,4)
− ψ(t1,2 + t1,3 + t2,3, t1,4 + t2,4) + ψ(t2,3, t2,4)]
= [t2,4,−ψ(t1,3, t1,2 + t1,4) + ψ(t1,3, t1,2) + ψ(t1,3, t2,3 + t3,4) − ψ(t1,3, t2,3)]
= [t2,4,−ψ(t1,3, t1,2 + t1,4) + ψ(t1,3, t2,3 + t3,4) − ψ(t1,2, t2,3)]
= [ψ(t1,2, t2,3), t2,4].
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Here we used the (1324) and (3124) permutations of equation (15) as well as equa-
tion (14) which implies ψ(t1,2, t2,3) = ψ(t1,2, t1,3) + ψ(t1,3, t2,3). Again, the conclu-
sion is

dΨ(y) = ψ(t1,2, t2,3)(y).

Finally, we represent (dΨ)(z) as the image of the element

[t3,4, ψ(−t1,4 − t2,4 − t3,4, t2,4 + t3,4) − ψ(−t1,4 − t2,4 − t3,4, t3,4)
+ ψ(−t2,4 − t3,4, t3,4)]
= [t3,4, ψ(t1,2 + t1,3 + t2,3, t2,4 + t3,4) − ψ(t1,2 + t1,3 + t2,3, t3,4) + ψ(t2,3, t3,4)]
= [t3,4, ψ(t1,2 + t1,3, t2,4 + t3,4) − ψ(t1,3 + t2,3, t3,4) + ψ(t2,3, t3,4)]
= [t3,4,−ψ(t1,2, t2,3) + ψ(t1,2, t2,3 + t2,4)] = [ψ(t1,2, t2,3), t3,4],

where we used the equation (15) (no permutation needed). We conclude

dΨ(z) = ψ(t1,2, t2,3)(z),

and dΨ = ψ(t1,2, t2,3), as required.
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