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Abstract

The aim of this paper is to derive estimates for the accuracy of
the viability algorithm for systems which have shadowing properties.
Recently developped shadowing results are applied in order to prove
that the algorithm is linearly convergent for a certain class of right
hand sides.
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1 Introduction

Viability kernels of differential inclusions are of considerable interest, be-
cause many theoretical and practical problems can be reformulated as via-
bility problems. A standard reference on viability theory is the book [2] by
Aubin. In [5], Frankowska and Quincampoix proposed a first algorithm for
the computation of viability kernels, and Saint-Pierre succeeded to prove the
convergence of a fully discretized and hence implementable algorithm in [11].
This viability kernel algorithm was later generalized to impulsive differential
inclusions in [4].

The shadowing property has been thoroughly investigated in the frame-
work of dynamical systems, see [7] and [8]. In set-valued systems, shadowing
theory is still under development. First attempts to generalize the classical
ideas can be found in [1], [6], [9], [10], and [12].

As viability theory describes the behaviour of trajectories on the un-
bounded time interval [0,∞), it seems natural to use shadowing results as
tools in this context. The aim of this paper is to derive estimates for the
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accuracy of the fully discretized viability algorithm for systems which have
the shadowing property. In Section 4, a shadowing theorem from [10] is ap-
plied in order to show that the viability algorithm is linearly convergent for
a certain class of differential inclusions.

2 Definitions

Let X be a finite-dimensional vector space with unit ball B ⊂ X, and let
K ⊂ X be a compact subset. By dist(·, ·) and distH(·, ·) we will denote the
one-sided and the symmetric Hausdorff distance, respectively.

Consider the autonomous differential inclusion

ẋ(t) ∈ F (x(t)) for almost every t ≥ 0, x(0) = x0 ∈ X (1)

and its ρ-flow
Gρ : X ⇒ X, x 7→ R(0, ρ, x), (2)

where R(0, ρ, x) denotes the reachable set of (1) at time ρ. For any h > 0
let Xh ⊂ X be a countable subset with

∀x ∈ X, ∃xh ∈ Xh with |x− xh| ≤ α(h) (3)

and limh→∞ α(h) = 0. Given any subset A ⊂ X and ε > 0, we define

Aε := A+ εB and Aεh := Aε ∩Xh. (4)

Consider the semi-discretized Euler scheme

Γρ : X ⇒ X, x 7→ x+ ρF (x) (5)

and the fully discretized scheme

Γρ,h : Xh ⇒ Xh, xh 7→
(
xh + ρF (xh) + k(ρ, h)B

)
∩Xh, (6)

with k(ρ, h) := (2 + Lρ)α(h), where L > 0 will be a Lipschitz constant of a
restriction of F (see assumption (iii) below).

Definition 1. Let G : X ⇒ X be a set-valued mapping. Every sequence
(pn)n∈N with pn+1 ∈ G(pn) for all n ∈ N is called an orbit of G. A sequence
(xn)n∈N satisfying dist(xn+1, G(xn)) ≤ d for every n ∈ N is called a d-
pseudotrajectory of G.

Definition 2. A mapping G has the (d, ε)-shadowing property in K, if for
every d-pseudotrajectory (xn)n∈N ⊂ K there is an orbit (pn)n∈N of G such
that |xn − pn| ≤ ε for all n ∈ N.
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Definition 3. A mapping G has the inverse (d, ε)-shadowing property in K,
if for every continuous mapping Φ : X ⇒ X with compact and convex values
satisfying

distH(Φ(x), G(x)) ≤ d

for all x in a neighbourhood of K and every orbit (pn)n∈N ∈ K of G there is
an orbit (xn)n∈N of Φ such that |pn − xn| ≤ ε for all n ∈ N.

The definition of the inverse shadowing property is kept slightly vague
on purpose, because the required size of the neighbourhood depends on the
shadowing theorem which is applied in order to ensure that the system has
this property (see Section 4 for a concrete example).

Definition 4. A subset D ⊂ X is a discrete viability domain of a set-valued
mapping G, if

G(x0) ∩D 6= ∅ for all x0 ∈ D.

The discrete viability kernel ViabG(K) is the largest closed discrete viability
domain contained in K.

Analogously, a subset D ⊂ X is a viability domain of the differential
inclusion (1), if for any x0 ∈ D there exists a solution x : [0,∞) → D such
that x(0) = x0. The viability kernel ViabF (K) is the largest closed viability
domain of (1) contained in K.

Under mild assumptions on F and G, both types of viability kernels are
well-defined, compare e.g. [2].

The viability kernel algorithm presented in [11] computes the viability
kernel ViabΓρ,h(Kε

h) for a suitable ε > 0 instead of the analytical object
ViabF (K). As Kε is compact, Kε

h is a finite set, and thus the algorithm ter-
minates after at most #Kε

h steps. Estimating the accuracy of the algorithm
amounts to estimating the Hausdorff distance distH(ViabF (K),ViabΓρ,h(Kε

h)).
Please note that the mappings Γρ, Γρ,h, etc. are defined in a slightly different
way in the present paper for technical reasons, but that the basic idea has
been adopted without any changes.

Throughout this paper, we will suppose the following assumptions:

(i) The viability kernel ViabF (K) is stable in the sense that there exists
an ε0 > 0 such that ViabF (K) = ViabF (Kε0).

(ii) There exist a d
(s)
0 > 0 and a d

(is)
0 > 0 such that the ρ-flow Gρ has

(iia) the (d, ϕ(d))-shadowing property in Kε0 for d ∈ (0, d
(s)
0 ] and
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(iib) the inverse (d, ψ(d))-shadowing property in K for d ∈ (0, d
(is)
0 ],

where ϕ, ψ : R+ → R+ are increasing functions with limd→0 ϕ(d) = 0
and limd→0 ψ(d) = 0.

(iii) The mapping F is Lipschitz-continuous in Kε0 with Lipschitz constant
L > 0 and has compact and convex values.

3 Results

3.1 General estimates

Observation 1. For any compact set A ⊂ X, the viability kernels can be
characterized by

ViabG(A) = {x0 ∈ A : ∃(pn)n∈N ⊂ A with p0 = x0 and pn+1 ∈ G(pn) ∀n ∈ N}

and

ViabF (A) = {x0 ∈ A : ∃ a solution x : [0,∞)→ A of (1) with x(0) = x0}.

It is obvious that the right hand sides are the largest viability domains con-
tained in A. Under mild assumptions on F and G they are closed, compare
e.g. Theorem 3.5.3 in [2].

Observation 2. Because of assumption (iii), F is bounded on Kε0 by ‖F‖∞ =
M <∞. Thus any solution x of (1) remaining in Kε0 satisfies

|x(t)− x(0)| ≤
∫ t

0

|ẋ(s)|ds ≤Mt. (7)

If x(0) ∈ Kε with 0 < ε < ε0, we have x(t) ∈ Kε0 for all t ∈ [0, ρ] with
0 < ρ < ε0−ε

M
. Otherwise 0 < t0 := inf{t ∈ [0, ρ] : x(t) /∈ Kε0} < ρ and (7)

holds for all 0 ≤ t ≤ t0. But then

|x(t0)− x(0)| ≤Mt0 < Mρ ≤ ε0 − ε

implies that x(t0) is in the interior of Kε0, which is a contradiction. Thus
we can apply (7) for all t ∈ [0, ρ]. If x(0) ∈ Kε and x(ρ) ∈ Kε, we can apply
it forwards in time from x(0) and backwards in time from x(ρ) in order to
obtain

dist(x(s), Kε) ≤ 1

2
Mρ ∀s ∈ [0, ρ]. (8)

4



Lemma 3. We have

ViabF (K) = ViabGρ(K
ε)

for all 0 ≤ ε < ε0 and 0 < Mρ < ε0 − ε.

Proof. Obviously ViabF (K) ⊂ ViabGρ(K
ε). But

x0 ∈ ViabGρ(K
ε) ⇒ ∃(pn)n∈N ⊂ Kε : p0 = x0, pn+1 ∈ Gρ(pn) ∀n ∈ N
⇒ ∃ a solution x : [0,∞)→ X of (1) : x(nρ) = pn ∈ Kε

⇒ dist(x(t), Kε) ≤ 1

2
Mρ ∀t ≥ 0

⇒ x0 ∈ ViabF (Kε+ 1
2
Mρ) = ViabF (K)

by assumption (i) and Observation 2.

The following Lemma is contained implicitly in many works, because it
estimates the local error of the semi-discretized Euler-scheme. Nevertheless
it is included explicitly in this paper for the sake of self-containedness and
readability.

Lemma 4. The error of approximation between Gρ and Γρ is

distH(Gρ(x0),Γρ(x0)) ≤Mρ(eLρ − 1)

for all 0 < ε < ε0, x0 ∈ Kε, and ρ > 0 such that MρeLρ ≤ ε0 − ε.

Proof. Let a solution x : [0, ρ]→ X of (1) with x(0) = x0 be given. Because
of (7), x(s) ∈ Kε0 for all s ∈ [0, ρ]. As F has convex values, we can iden-
tify the Euler-step Γρ(x0) with the reachable set of the constant differential
inclusion

ė(t) ∈ F (x0), e(0) = x0 (9)

at time ρ. Since

dist(ẋ(t), F (x(0))) ≤ dist(F (x(t)), F (x(0))) ≤ L|x(t)− x(0)| ≤ LMt,

the Filippov theorem (cf. Theorem 2.4.1 in [3]) guarantees the existence of a
solution e : [0, ρ]→ X of (9) satisfying

|x(t)− e(t)| ≤
∫ t

0

eL(t−s)LMtds = Mt(eLt − 1)

for all t ∈ [0, ρ], and in particular

dist(x(ρ),Γρ(x0)) ≤ |x(ρ)− e(ρ)| ≤Mρ(eLρ − 1).
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Conversely, let η ∈ F (x0) be given and consider the corresponding linear
trajectory e(t) := x0 + tη for t ∈ [0, ρ] of Γρ. As

dist(ė(t), F (e(t))) ≤ dist(F (x0), F (e(t))) ≤ LMt,

the Filippov theorem yields a solution x : [0, ρ] → X of (1) with x(0) = x0

and

|x(t)− e(t)| ≤
∫ t

0

eL(t−s)LMtds = Mt(eLt − 1)

for all t ∈ [0, ρ], and in particular

dist(e(ρ), Gρ(x0)) ≤ |e(ρ)− x(ρ)| ≤Mρ(eLρ − 1).

3.2 Estimates using the shadowing and the inverse shad-
owing property

Lemma 5. If Mρ(eLρ− 1) ≤ d
(is)
0 , ε1 := ψ(Mρ(eLρ− 1)) ≤ ε0 and MρeLρ ≤

ε0 then
dist(ViabF (K),ViabΓρ(K

ε1)) ≤ ε1,

Proof. Let p0 ∈ ViabF (K) = ViabGρ(K) be given. Hence there exists an
orbit (pn)n∈N of Gρ such that pn ∈ K for all n ∈ N. As Γρ is continuous with
compact and convex values, Lemma 4 ensures that Γρ is an approximation
of Gρ in the sense of assumption (iib), which in turn yields the existence of
an orbit (xn)n∈N of Γρ such that such that |pn − xn| ≤ ε1. Thus xn ∈ Kε1

for all n ∈ N, and x0 ∈ ViabΓρ(K
ε1) by Observation 1.

The following lemma uses a simple calculation: For any A ⊂ X, we have
dist(A,A

α(h)
h ) ≤ α(h), because for every a ∈ A there is an xh ∈ Xh such that

|a− xh| ≤ α(h), and then xh ∈ Aα(h) ∩Xh.

Lemma 6. If ε1 + α(h) ≤ ε0, then

dist(ViabΓρ(K
ε1),ViabΓρ,h(K

ε1+α(h)
h )) ≤ α(h).

Proof. Let (xn)n∈N be a viable orbit of Γρ in Kε1 . By definition, there exists

a ξ0 ∈ Kε1+α(h)
h such that |x0 − ξ0| ≤ α(h). Since

dist(x0 + ρF (x0), ξ0 + ρF (ξ0)) ≤ (1 + Lρ)α(h), (10)
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we have

dist(x0 + ρF (x0), ξ0 + ρF (ξ0) + (1 + Lρ)α(h)B) = 0, (11)

and thus

dist(Γρ(x0),Γρ,h(ξ0))

= dist(x0 + ρF (x0), (ξ0 + ρF (ξ0) + (2 + Lρ)α(h)B) ∩Xh)

≤ α(h).

Thus there exists a ξ1 ∈ Γρ,h(ξ0) such that |x1−ξ1| ≤ α(h), and by induction
there exists a whole orbit (ξn)n∈N of Γρ,h with |xn− ξn| ≤ α(h) for all n ∈ N.

Consequently ξn ∈ Kε1+α(h)
h for all n ∈ N, and ξ0 ∈ ViabΓρ,h(K

ε1+α(h)
h ).

Lemma 7. Let ε2 := ϕ(k(ρ, h) +Mρ(eLρ − 1)). If MρeLρ ≤ ε0 − ε1 − α(h),

Mρ ≤ ε0 − ε1 − α(h)− ε2, and k(ρ, h) +Mρ(eLρ − 1) ≤ d
(s)
0 ,

dist(ViabΓρ,h(K
ε1+α(h)
h ),ViabF (K)) ≤ ε2.

Proof. By Lemma 4,

dist(Γρ,h(xh), Gρ(xh))

≤ dist(xh + ρF (xh) + k(ρ, h)B, xh + ρF (xh)) + dist(xh + ρF (xh), Gρ(xh))

≤ k(ρ, h) +Mρ(eLρ − 1) =: d

for every xh ∈ Kε1+α(h)
h . Thus any trajectory (ξn)n∈N of Γρ,h which is viable

in K
ε1+α(h)
h is a d-pseudotrajectory of Gρ, and assumption (iia) implies the

existence of an orbit (pn)n∈N of Gρ such that |pn − ξn| ≤ ε2 for all n ∈ N.
Hence x0 ∈ ViabGρ(K

ε1+α(h)+ε2) = ViabF (K) by Lemma 3 and Observation
1.

Altogether we obtain an estimate for the accuracy of the viability kernel
algorithm:

Theorem 8. If

k(ρ, h) +Mρ(eLρ − 1) ≤ d
(s)
0 , (12)

Mρ(eLρ − 1) ≤ d
(is)
0 , (13)

MρeLρ + ε1 + α(h) ≤ ε0, (14)

Mρ+ ε1 + ε2 + α(h) ≤ ε0, (15)

and if assumptions (i) to (iii) are satisfied, then

distH(ViabF (K),ViabΓρ,h(K
ε1+α(h)
h )) ≤ max{ε1 + α(h), ε2}. (16)
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The conditions of Theorem 8 do not look very appealing. Please note
that they can be verified easily in a quite practical sense: Let a desired
accuracy δ > 0 of the approximation of the viability kernel be prescribed. If
concrete monotonous functions ϕ and ψ are given, the inequalities (12) to
(15) together with

max{ε1 + α(h), ε2} ≤ δ (17)

can be regarded as constraints which are monotonous w.r.t. ρ and α(h). One
can fix a (sufficiently small) ρ > 0 and determine the maximal α(h) such that
the pair (ρ, α(h)) satisfies all constraints using a simple interval subdivision
algorithm. The same method can be used in the context of Theorem 11.

3.3 Estimates using the shadowing property only

It is possible to dispense with the inverse shadowing property by inflating
the right hand sides of the numerical schemes so much that the numerical
errors are ’swallowed’ by the inflation. Therefore, we define

Γ̃ρ : X ⇒ X, x 7→ x+ ρF (x) +Mρ(eLρ − 1)B (18)

and

Γ̃ρ,h : Xh ⇒ Xh, xh 7→
(
xh+ρF (xh)+Mρ(eLρ−1)B+k(ρ, h)B

)
∩Xh. (19)

For these schemes we have

Lemma 9. If MρeLρ ≤ ε0 and α(h) ≤ ε0,

dist(ViabF (K),ViabΓ̃ρ,h
(K

α(h)
h )) ≤ α(h).

Proof. According to Lemma 4,

dist(Gρ(x0),Γρ(x0)) ≤Mρ(eLρ − 1)

for all x0 ∈ K, and thus

dist(Gρ(x0), Γ̃ρ(x0)) = 0

and
dist(ViabGρ(K),ViabΓ̃ρ

(K)) = 0.

Adapting the proof of Lemma 6 to Γ̃ρ and Γ̃ρ,h yields the desired result.
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Lemma 10. If ε3 := ϕ(2Mρ(eLρ − 1) + k(ρ, h)) ≤ ε0 − α(h), MρeLρ ≤
ε0 − α(h), and 2Mρ(eLρ − 1) + k(ρ, h) ≤ d

(s)
0 , then

dist(ViabΓ̃ρ,h
(K

α(h)
h ),ViabF (K)) ≤ ε3.

Proof. By Lemma 4,

dist(Γ̃ρ,h(xh), Gρ(xh))

≤ dist(xh + ρF (xh) +Mρ(eLρ − 1)B + k(ρ, h)B, xh + ρF (xh))

+ dist(xh + ρF (xh), Gρ(xh))

≤ 2Mρ(eLρ − 1) + k(ρ, h) =: d̃

for any xh ∈ Kα(h)
h .

Thus any trajectory (ξn)n∈N of Γ̃ρ,h which is viable in K
α(h)
h is a d̃-

pseudotrajectory of Gρ, and assumption (iia) implies that there exists an
orbit (pn)n∈N of Gρ such that |pn − ξn| ≤ ε3 for all n ∈ N. Hence p0 ∈
ViabGρ(K

α(h)+ε3) = ViabF (K) by Lemma 3.

Summarizing we obtain an estimate for the accuracy of the viability ker-
nel algorithm for systems which have the shadowing but not the inverse
shadowing property:

Theorem 11. If

MρeLρ + α(h) ≤ ε0, (20)

2Mρ(eLρ − 1) + k(ρ, h) ≤ d
(s)
0 , (21)

ε3 + α(h) ≤ ε0, (22)

and if assumptions (i), (iia), and (iii) are satisfied, then

distH(ViabF (K),ViabΓ̃ρ,h
(K

α(h)
h )) ≤ max{α(h), ε3}. (23)

4 Example

It was shown in [9] that certain differential inclusions with a contractive ρ-
flow have the shadowing and the inverse shadowing property. The results
which are relevant for this paper are summarized in the following

Theorem 12. Let the right hand side F : X ⇒ X of (1) be Lipschitz
continuous with constant L and with compact and convex values, and let
‖F (x)‖ ≤ M for some M > 0 and all x ∈ X. Assume that there exist
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numbers a > 0 and λ ∈ (0, 1) such that the ρ-flow defined by (2) satisfies the
stability condition

distH(Gρ(x), Gρ(x+ v)) ≤ λ|v| (24)

for any x ∈ X and |v| ≤ a. If ρ ≤ d
2M

and d < d0 := 1−λ
2
a, then Gρ has

the (d, 2d
1−λ)-shadowing property and the inverse (d, 2d

1−λ)-shadowing property
in X.

In the same paper it was shown that a differential inclusion satisfies (24)
if its right hand side has the relaxed one-sided Lipschitz property with a
negative Lipschitz constant.

Theorem 12 is formulated in such a way that all assumptions are required
to be true on the whole space. However, it is also valid if the assumptions
are satisfied on a subset Kε0 ,

• the given d-pseudotrajectory of Gρ is contained in Kε (shadowing)

• the given orbit of Gρ is contained in Kε (inverse shadowing)

for some ε > 0, and a ≤ ε0 − ε, because the behaviour of Gρ is only relevant
on an a-neighbourhood of the given trajectory.

Repeating the line of argument of section 3.2 in this setup, we obtain

Theorem 13. Let the right hand side F : X ⇒ X of (1) be Lipschitz
continuous in Kε0 with constant L and with compact and convex values, and
let ‖F (x)‖ ≤ M for some M > 0 and all x ∈ Kε0. Let λ ∈ (0, 1) such that
the ρ-flow Gρ satisfies (24) for any x ∈ Kε0 and v ∈ X with x+ v ∈ Kε0. If

5− λ
1− λ

α(h) +
2L

1− λ
α(h)ρ+

4

1− λ
Mρ(eLρ − 3 + λ

4
) ≤ ε0

then

distH(ViabF (K),ViabΓρ,h(K
ε1+α(h)
h )) ≤ 4

1− λ
α(h) +

2L

1− λ
α(h)ρ+ ε1,

where ε1 = 2
1−λMρ(eLρ − 1).

Following section 3.3, we obtain a slightly but not substantially worse
estimate under similar conditions.

In classical numerical analysis, the order of convergence of a scheme is
regarded as one of the most important indicators for its quality. It is doubtful
if this way of thinking is appropriate here, but it is possible to obtain linear
convergence w.r.t. the spatial discretization α(h) by setting α(h) := ρ.
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Please note that every shadowing theorem for the ρ-flow of a differential
inclusion can be used to derive a concrete error estimate for the viability
kernel algorithm in the way sketched above. As the shadowing theory for
set-valued systems is still being developped, there is hope that the reasoning
of section 3 can soon be applied to more general classes of right hand sides.
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