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Abstract

We consider approximation of ∞-variate functions with the error measured in

a weighted L2-norm. The functions being approximated belong to weighted tensor

product spaces with arbitrary weights γu. We provide complexity upper bounds

and sufficient conditions for polynomial and weak tractabilities expressed in terms

of the properties of the weights γu and the complexity of the corresponding uni-

variate approximation problem. These tractability conditions are also necessary for

important types of weights including product weights.

1 Introduction

There is a growing interest in tractability of problems dealing with functions of infinitely
many variables, see [1, 7, 8, 9, 13, 15, 16, 17, 18, 20, 21, 23, 24]. With the exception of
[20, 23, 24], all these papers study weighted integration, i.e., approximation of integrals
of ∞-variate functions. Such integrals, often referred to as path integrals, appear in many
applications, see, e.g., [2, 3, 4, 5, 6, 10, 11, 12, 14, 25].

Approximation of ∞-variate functions has been studied in [23, 24]; however, with the
error measured in the norm of a very special Hilbert space G. This norm is such that,
in general, the integration problem is more difficult than the approximation problem. It
was chosen for its simplicity which allowed to get optimal algorithms, sharp complexity
results, as well as a necessary and sufficient condition for tractability. We use these results
in the current paper to get complexity bounds and sufficient conditions for tractability
of the approximation problem with a true weighted L2 norm. These conditions are not
necessary in general; however, they are necessary for a number of important classes of
weights including product and finite-order weights.

More precisely, the functions to be approximated have representation f =
∑

u
fu,

where u are finite subsets of N+ = {1, 2, . . . } and fu ∈ Hu. Here Hu is the tensor product
of a Hilbert space H of univariate functions whose domain is D. The functions from Hu

1



depend only on variables xj with j ∈ u. The norm of Fγ is

‖f‖Fγ
=

[∑

u

γ−1
u

· ‖fu‖2Hu

]1/2
,

where γ = {γu}u is a given family of non-negative numbers γu, called weights.
In [23, 24], G is the space whose norm is given by

‖f‖2G =
∑

u

‖fu‖2L2,u
,

where L2,u = L2(D
|u|, ρu) is the space of functions with the norm

‖fu‖2L2,u
=

[∏

j∈u

∫

D

]
fu(x) · ρu(x) dx and ρu(x) =

∏

j∈u

ρ(xj)

for a given positive probability density function ρ on D. In the current paper, we measure
the approximation errors in the norm of the space L2 given by

‖f‖2L2
=

∫

D∞

|f(x)|2 · ρ∞(x) dx := lim
d→∞

∫

Dd

∣∣∣∣
∑

u⊆{1,...,d}

fu(x)

∣∣∣∣
2

·
d∏

j=1

ρ(xj) dx.

We consider algorithms that use a finite number of either arbitrary functional evaluations
〈f, hk〉Fγ

or function samples f(xk). In the former case, we say that information is
unrestricted linear and in the latter case it is standard. The cost of each such evaluation
is given by $(|Var(hk)|) or $(|Var(xk)|), where $ is a given cost function and Var is the
set of active variables. For instance, if hk ∈ Hu for some u, then Var(hk) = u. The cost
of the algorithm is given by the total cost of functional (or sample) evaluations. In the
worst case setting considered in this paper, the error of an algorithm is the largest error
among all functions from the unit ball in Fγ .

Then the complexity, comp(ε), is the minimal cost among all algorithms with errors
not exceeding ε, and polynomial tractability of the problem is defined so that it holds iff
there are C and p such that

comp(ε) ≤ C · ε−p for all ε ∈ (0, 1).

The minimal such p is called the exponent of tractability. Since the complexity depends
on whether unrestricted linear or only standard informations is allowed, we will use

p(Λall) or p(Λstd),

respectively, to denote the corresponding tractability exponent. We also consider weak

tractability which holds iff the complexity does not depend exponentially on 1/ε.
To avoid too technical details, we now present some of the results only for product

weights γu =
∏

j∈u γj with γj > 0. Suppose that

γj = O
(
j−β

)
for β > 1. (1)
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Without any loss of generality, we assume that there exists α > 0 such that the complexity
of the univariate problem is bounded by O

(
ε−2/α

)
.

If the cost function $(d) = O
(
ek·d

)
and unrestricted linear information is allowed then

the approximation problem is polynomially tractable with the exponent of tractability
bounded by

p(Λall) ≤ max

(
2

α
,

2

β − 1

)
.

Moreover, this upper bound is sharp if the exponents α and β are sharp and $(d) is at

least linear in d, $(d) = Ω(d). If $(d) = O
(
ee

k·d
)
then the problem is weakly tractable.

Similar results hold when only standard information is allowed. We stress that for
many spaces H of univariate problems the complexity with respect to standard infor-
mation is, modulo a constant, the same as the complexity with respect to unrestricted
information. If this is the case, $(d) = Ω(d), and the exponents α, β are sharp then

p(Λall) = p(Λstd) = max

(
2

α
,

2

β − 1

)
.

These results are extended for arbitrary weights γu with, roughly, β replaced by a
number δ such that ∑

u

γ1/δ
u

< ∞.

However, in general, the corresponding upper bound max(2/α, 2/(δ − 1)) might not be
sharp and δ > 1 might not be necessary.

2 Basic Concepts

In this section, we recall basic definitions/concepts used in the paper. We follow the
model introduced in [13] for the integration problem (see also [8, 16]) and extended in
[23, 24] for the approximation problem.

2.1 Weighted Tensor Product Spaces

The spaces Fγ of ∞-variate functions that are to be approximated are weighted sums of
tensor products of a space H of univariate functions. This is why we begin with that
space.

Let H be a separable Hilbert space of functions whose domain D is a Borel measurable
subset of R. We assume

1 /∈ H, (2)

where 1 is the constant function f(x) = 1. To simplify the notation, we will assume that
dim(H) = ∞ when deriving positive results. Of course, those positive results can be easily
translated to the case when H has a finite dimension ≥ 2, and when dim(H) = 1 and
weights have product form, see Remark 5. However, when presenting negative results, we
will allow dim(H) < ∞.
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Let D be the set of all points x = [x1, x2, . . . ] with countably many coefficients xi ∈ D.
For a finite and non-empty subset u ⊂ N+ := {1, 2, . . .}, let Hu be the |u|-fold tensor
product of H of functions defined on D whose active variables are listed in u. That is, for
any f ∈ Hu,

f(x) = f(y) if xj = yj for all j ∈ u.

For u = ∅, H∅ is the space of constant functions with the natural inner-product.
Let

γ = {γu}u : |u|<∞

be a collection of non-negative numbers γu, called weights, and let

Uγ := {u ⊂ N+ : |u| < ∞ and γu > 0}.

Finally, Fγ is the completion of the pre-Hilbert space spanned by Hu for u ∈ Uγ with
respect to the following norm

‖f‖2Fγ
=

∑

u∈Uγ

γ−1
u

· ‖fu‖2Hu

for f =
∑

u∈Uγ

fu with fu ∈ Hu.

Due to (2), the spaces Hu are mutually orthogonal and every function f has its unique
orthogonal representation

f =
∑

u∈Uγ

fu with fu ∈ Hu. (3)

When dealing with function evaluations, we will assume that the space H is a repro-
ducing kernel Hilbert space (RKH space, for short) whose kernel is denoted by K and
that there exists a point a ∈ D, called an anchor, such that

K(a, a) = 0. (4)

Then the subspaces Hu are also RKH spaces with the kernels

Ku(x,y) =
∏

j∈u

K(xj , yj)

and
Ku(x,x) = 0 if xj = a for some j ∈ u.

The space Fγ is a RKH space iff

∑

u∈Uγ

γu ·Ku(x,x) < ∞ for all x ∈ D. (5)

Then Kγ(x,y) :=
∑

u
γu ·Ku(x,y) is the kernel of Fγ .

If (5) does not hold then function sampling, Lx(f) := f(x), is a discontinuous (or
ill-defined) functional for some x ∈ D. This is why we refer to such spaces as quasi-

reproducing kernel Hilbert spaces (Q-RKH spaces for short). However, even then, Lx is
continuous when x has only finitely many components different from the anchor a. That
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is, for given x ∈ D and u, let [x; u] be a short hand notation for the point with active
variables listed in u, i.e.,

[x; u] := y = [y1, y2, . . . ] with yj :=

{
xj if j ∈ u,
a if j /∈ u.

(6)

Then
f([x; u]) =

∑

v⊆u

fv(x) and ‖L[x;u]‖2 =
∑

v⊆u

γv ·Kv(x,x) < ∞.

Of course, [x; ∅] = a = [a, a, . . . ] and f([x; ∅]) = f∅ for any x ∈ D and any f ∈ Fγ .
We illustrate this for the Wiener kernel.

Example 1 Consider K(x, y) = min(x, y) with D = [0, 1] or D = [0,∞). Clearly, the
anchor equals a = 0. If

∑∞
u∈Uγ

γu < ∞, then Fγ is a RKH space when D = [0, 1], and it

is only a Q-RKH space when D = [0,∞) and |Uγ | = ∞.

2.2 L2-Approximation Problem

Let ρ be a given probability density function on D. Without loss of generality, we assume
that it is positive almost everywhere on D. Then L2(D, ρ) endowed with

‖f‖2L2(D,ρ) :=

∫

D

|f(x)|2 · ρ(x) dx,

is a Hilbert space. Suppose also that H is continuously imbedded in L2(D, ρ), i.e.,

C0 := sup
f∈H

‖f‖L2(D,ρ)

‖f‖H
< ∞. (7)

Actually, we need a stronger assumption. For d ≥ 1, let

[1..d] := {1, 2, . . . , d} and ρ[1..d](x) :=

d∏

j=1

ρ(xj).

We assume that

C∞ := sup
f∈Fγ

‖f‖L2(D,ρ∞)

‖f‖Fγ

< ∞, (8)

where

‖f‖2L2(D,ρ∞) := lim
d→∞

∫

Dd

∣∣∣∣
∑

u∈Uγ ,u⊆[1..d]

fu(x)

∣∣∣∣
2

· ρ[1..d](x) dx

and L2(D, ρ∞) is the Hilbert space (the completion of span{Hu : u ∈ Uγ}) of functions
with the norm given above. To simplify the notation, we will often write L2 instead of
L2(D, ρ∞).

We are interested in approximating functions from Fγ with errors measured in the
norm of L2. We will refer to this as the L2-approximation problem.
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Define

C1 := sup
‖f‖H≤1

∫

D

f(x) · ρ(x) dx.

It is well known that

C2
1 =

∫

D

ρ(x)

∫

D

K(x, y) · ρ(y) dy dx (9)

if H is a RKH space with the kernel K. Since C1 ≤ C0, (7) implies that C1 is finite. We
have the following bounds on C∞.

Proposition 1

max

(
sup
u∈Uγ

γu · C2·|u|
0 ,

∑

u∈Uγ

γu · C2·|u|
1

)
≤ C2

∞ ≤
∑

u∈Uγ

γu · C2·|u|
0 .

Proof. We begin with the upper bound on C∞. Clearly

‖f‖2L2
≤

[ ∑

u∈Uγ

‖fu‖L2(D|u|,ρu)

]2
≤

[ ∑

u∈Uγ

C
|u|
0 · ‖fu‖Hu

]2

=

[ ∑

u∈Uγ

γ1/2
u

· C |u|
0 · ‖fu‖Fγ

]2
≤ ‖f‖2Fγ

·
∑

u∈Uγ

γu · C2·|u|
0 ,

as needed.
We now prove the lower bound on C∞. Let f ∗ ∈ H be such that ‖f ∗‖H = 1 and

‖f ∗‖L2(D,ρ) = C0. For an arbitrary u ∈ Uγ , consider f ∗
u
(x) :=

∏
j∈u f

∗(xj). Then

‖f ∗
u
‖Fγ

= γ
−1/2
u and ‖f ∗

u
‖L2

= C
|u|
0 , which implies that C∞ ≥ sup

u∈Uγ
C0 · γ1/2

u .
Without loss of generality, we can assume that the supremum in (9) is attained, i.e.,

that there exists h ∈ H such that ‖h‖H = 1 and
∫
D
h(t) · ρ(t) dt = C1. For d ≥ 1, define

fd(x) :=
∑

u∈Uγ ,u⊆[1..d]

γu · C |u|
1 · hu(x)/Td,

where

hu(x) =
∏

j∈u

h(xj) and Td =

( ∑

u∈Uγ ,u⊆[1..d]

γu · C2·|u|
1

)1/2

.

It is easy to verify that ‖fd‖Fγ
= 1 and that

(∫

Dd

fd(x) · ρ[1..d](x) dx
)2

=
∑

u∈Uγ ,u⊆[1..d]

γu · C2·|u|
1 .

Hence, if
∑

u∈Uγ
γu · C2·|u|

1 = ∞ then also C∞ = ∞. Otherwise

f∞(x) :=
∑

u∈Uγ

γu · C |u|
1 · hu(x)/

( ∑

v∈Uγ

γv · C2·|v|
1

)1/2
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is a well defined function such that ‖f∞‖Fγ
= 1 and

‖f∞‖L2
≥ lim

d→∞

∫

Dd

f∞(x) · ρ[1..d](x) dx =
∑

u∈Uγ

C
2·|u|
1 · γu.

This completes the proof. 2

Unless additional restrictions on the weights γu and/or space H are imposed, both
lower and upper bounds of Proposition 1 are sharp. This is illustrated by the following
two examples.

Example 2 Suppose that the space H is such that
∫
D
f(x)·ρ(x) dx = 0 for every f ∈ H .

Then C1 = 0 and, as follows from [23, 24],

C∞ = sup
u∈Uγ

C
|u|
0 · √γu.

Note however that, depending on the weights,
∑

u∈Uγ
C

2·|u|
0 · γu could be finite or infinite.

Example 3 Consider D = [0, b] and ρ ≡ 1/b for b > 1. Let g ∈ H , where g is the
characteristic function of [0, 1] and ‖g‖H = 1. Then C0 = 1/

√
b and C1 = 1/b. Consider

weights γu that are zero when |u| 6= 1 and G∞ :=
∑∞

j=1 γ{j} < ∞. Take f ∈ Fγ given by

f(x) =
∞∑

j=1

aj · g(xj) with aj = γ{j}/
√

G∞.

Then ‖f‖Fγ
= 1 and

‖f‖2L2
=

(
1

b
− 1

b2

)
·

∞∑

j=1

a2j +
1

b2
·
[ ∞∑

j=1

aj

]2

=

(
1

b
− 1

b2

)
·
∑∞

j=1 γ
2
{j}∑∞

j=1 γ{j}
+

1

b2
·

∞∑

j=1

γ{j}.

Since the last sum is equal to
∑

u∈Uγ
C

2·|u|
1 · γu, this shows that the upper bound of

Proposition 1 is sharp for b approaching 1.

This paper uses results from [23, 24], where a different problem, referred to as the
G-approximation problem, was considered. In that problem, the approximation errors are
measured in the norm of the space G which is the completion of span{Hu : u ∈ Uγ}
with respect to ∥∥∥∥

∑

u∈Uγ

fu

∥∥∥∥
2

G

:=
∑

u∈Uγ

‖fu‖2L2(D|u|,ρu)
.

As observed in [23], G = L2 if
∫
D
f(x) · ρ(x) dx = 0 for all f ∈ H . This is why we assume

from now on that ∫

D

f(x) · ρ(x) dx 6= 0 for some f ∈ H. (10)
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2.3 Algorithms

Since Fγ is a Hilbert space, we may restrict the attention to linear algorithms, see e.g.,
[19], of the form

An(f) =
n∑

i=1

Li(f) · gi with gi ∈ L2.

Here the Li’s are continuous linear functionals and their values {Li(f)}ni=1 constitute infor-
mation about the specific function f , and the elements gi’s are functions from L2(D, ρ∞).
If Li’s may be arbitrary (continuous) functionals, then we say that the information is
unrestricted linear. Sometimes, only function sampling Li(f) = f(ti) is allowed. Then

An(f) =
n∑

i=1

f(ti) · gi with ti ∈ D.

We refer to such information as standard information. Since, in general, Fγ is only a
Q-RKH space, the sampling points ti used by the algorithms are restricted to those that
have only finitely many active variables, i.e.,

ti = [xi; ui]

for some xi ∈ D and ui, see (6). That is, the algorithms using standard information are
of the form

An(f) =
n∑

i=1

f([xi; ui]) · gi. (11)

We assume that the cost of evaluating L(f) depends on the number of active variables.
More precisely, for L(f) = 〈f, h〉 with h =

∑
u∈Uγ

hu, the set of active variables is

Var(h) :=
⋃

u : hu 6=0

u.

Then the cost of evaluating L(f) is given by

$(|Var(h)|),

where
$ : N → [1,∞]

is a given cost function, and the cost of an algorithm An(f) =
∑n

i=1 〈f, hi〉 · gi equals

cost(An) =

n∑

i=1

$(Var(hi)).

At this moment we only assume that

$(0) ≥ 1 and $(d1) ≤ $(d2) if d1 ≤ d2.
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For L(f) = f([x; u]), we have L(f) = 〈f, h〉 with h(·) =
∑

v⊆u
γu · Kv(·,x) and

Var(h) = u. Hence, the cost of such a function sampling is simply $(|u|).
In the worst case setting considered in this paper, the error of An is defined by

error(An) = error(An;Fγ,L2) := sup
‖f‖Fγ

≤1

‖f −An(f)‖L2
.

Of course, for the G-approximation problem, we have

error(A;Fγ,G) := sup
‖f‖Fγ

≤1

‖f −An(f)‖G .

2.4 Complexity and Tractability

For a given error demand ε > 0, let

comp(ε) = comp(ε;Fγ,L2) := inf {cost(An) : error(An) ≤ ε}

be the minimal cost among algorithms with errors not exceeding ε. When only standard
information is allowed, the infimum above is with respect to algorithms that use function
values only. To distinguish the complexities with standard and unrestricted information,
we will sometimes write

comp(ε; Λ) or comp(ε; Λ,Fγ,L2)

with Λ = Λstd for standard information and Λ = Λall for unrestricted linear information.
The problem is weakly tractable if the complexity is not exponential in 1/ε, i.e.,

lim
ε→0

ε · ln (comp(ε)) = 0.

A stronger notion is the polynomial tractability which, by the definition, is equivalent to

comp(ε) ≤ C · ε−p

for some C and p and any ε > 0. The smallest (or more precisely, infimum of) such p is
called the exponent of polynomial tractability,

p := lim
ε→0

ln(comp(ε))

ln(1/ε)
.

Sometimes we will write p(Λ) with Λ ∈ {Λall,Λstd} to stress whether unrestricted linear
or standard information is used.

3 Main Results

For a given family γ of weights, we define the decay of γ by

decay(γ) := sup

{
t > 0 :

∑

u∈Uγ

γ1/t
u

< ∞
}
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with the convention that sup ∅ = 0. This extends already introduced in the literature, see
[22], the decay for product weights of the form

γu =
∏

j∈u

γj with γj > 0.

For such weights, the original definition of the decay is

decay(γ) := sup

{
t : lim

j→∞
γj · jt = 0

}

which clearly is equal to sup
{
t :

∑∞
j=1 γ

1/t
j < ∞

}
. Since for product weighs

∑
u⊂N+

γ
1/t
u =

∏∞
j=1

(
1 + γ

1/t
j

)
, we conclude that

sup

{
t :

∞∑

u⊂N+

γ1/t
u

< ∞
}

= sup

{
t : lim

j→∞
γj · jt = 0

}

as claimed. In particular,

decay(γ) = β if γj = Θ
(
j−β · lnc(j + 1)

)

for positive β and any c.
Unless stated otherwise, we assume throughout the rest of the paper that

decay(γ) > 1 (12)

since our proof technique uses this fact.
Note that decay(γ) ≥ 1 is a necessary condition for the imbedding operator to be well

defined when the weights are of the product form. This is because

∑

u∈Uγ

γu · C2·|u|
1 =

∞∏

j=1

(
1 + γj · C2

1

)
.

Moreover, as explained later (see Prop. 4), the L2-approximation problem cannot be
polynomially tractable when γj = Ω(j−1 · lnc(1 + j)).

On the other hand, (12) is not necessary for very special weights and kernel K as we
will show in Example 4.

We need the following auxiliary result.

3.1 Auxiliary Result

Recall that for given Fγ , G is the completion of span{Hu : u ∈ Uγ} with respect to

∥∥∥∥
∑

u∈Uγ

fu

∥∥∥∥
2

G

:=
∑

u∈Uγ

‖fu‖2L2(D|u|,ρu)
.
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Lemma 2 Suppose that there exists c ∈ (1/decay(γ), 1) such that

sup
u∈Uγ

γ1−c
u

· C2·|u|
0 < ∞. (13)

Then, for

γ̂c = {γ̂u,c}u with γ̂u,c := γ1−c
u

·
∑

v∈Uγ

γc
v
,

Fγ is continuously imbedded in Fγ̂c
, and Fγ̂c

is continuously imbedded in G. Moreover,

for any linear algorithm A satisfying

A(Hu) ⊆ L2(D
|u|, ρu) for all u ∈ Uγ , (14)

we have that

error(A;Fγ,L2) ≤ error(A;Fγ̂c
,G).

Here, the right-hand-side of the above inequality denotes the worst case error of A for the

G-approximation problem for functions from Fγ̂c
.

Proof. For any f ∈ Fγ we have

‖f‖2Fγ̂c
=

∑

u∈Uγ

γc
u
· ‖fu‖2Hu

γu ·
∑

v∈Uγ
γc
v

≤
sup

v∈Uγ
γc
v∑

v∈Uγ
γc
v

·
∑

u∈Uγ

‖fu‖2Hu

γu
=

sup
v∈Uγ

γc
v∑

v∈Uγ
γc
v

· ‖f‖2Fγ
.

Hence Fγ is continuously imbedded in Fγ̂c
. It was shown in [23] that Fγ is continuously

imbedded in G iff
sup
u∈Uγ

γu · C2·|u|
0 < ∞.

Note that for γ̂u,c and the corresponding space Fγ̂c
, the above condition is satisfied since∑

v∈Uγ
γc
v
< ∞ for c > 1/decay(γ). Hence Fγ̂c

is continuously imbedded in G, as claimed.

Take any algorithm A that satisfies (14) and any f =
∑

u∈Uγ
fu with ‖f‖Fγ

≤ 1. Then

‖f −A(f)‖2L2
=

∥∥∥∥
∑

u∈Uγ

(fu −A(fu))

∥∥∥∥
2

L2

=

∥∥∥∥
∑

u∈Uγ

γc/2
u

· (fu/γc/2
u

−A(fu/γ
c/2
u

))

∥∥∥∥
2

L2

≤
∑

u∈Uγ

γc
u
·
∑

u∈Uγ

∥∥fu/γc/2
u

−A(fu/γ
c/2
u

)
∥∥2

L2(D,ρu)

=
∑

u∈Uγ

γc
u
·
∥∥∥∥
∑

u∈Uγ

(fu/γ
c/2
u

−A(fu/γ
c/2
u

))

∥∥∥∥
2

G

=

∥∥∥∥
∑

u∈Uγ

(gu −A(gu))

∥∥∥∥
2

G

,
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where

gu := fu ·

(∑
v∈Uγ

γc
v

)1/2

γ
c/2
u

.

Moreover,

∥∥∥∥
∑

u∈Uγ

gu

∥∥∥∥
2

Fγ̂c

=
∑

u∈Uγ

‖gu‖2Hu

γ̂u,c
=

∑

u∈Uγ

γ−1
u

· ‖fu‖2Hu

= ‖f‖2Fγ
≤ 1

which completes the proof. 2

We now illustrate the assumption (13) for product weights. Suppose that

γu =
∏

j∈u

j−β for β > 1.

Then for any c ∈ (1/β, 1), we have

γ̂u,c =
∏

j∈u

j−(1−c)·β ·
∞∏

j=1

(
1 + j−c·β

)
< ∞

since c · β > 1. Moreover,

C
2·|u|
0 · γ1−c

u
≤ C

2·|u|
0

(|u|!)(1−c)·β
≤ max

k∈N

C2·k
0

(k!)(1−c)·β
.

This means that (13) holds for any number c ∈ (1/β, 1) and, in particular, we can choose
c arbitrarily close to 1/β. Note also that

lim
c→1/β

(1− c) · β = β − 1. (15)

3.2 Unrestricted Linear Information

Consider the following operator

W : H → H and W (f) := Imb∗ ◦ Imb,

where Imb(f) = f is the imbedding operator from H to L2(D, ρ). If H is a RKH space
then

W (f)(x) :=

∫

D

f(y) ·K(x, y) · ρ(y) dy.

It is well known, see e.g., [19], that the approximation problem is not polynomially
tractable unless the eigenvalues λj of the operator W satisfy

λj = O
(
j−α

)
for α > 0. (16)

12



This is because the errors of optimal algorithms A∗
n for the univariate case are equal to

error(A∗
n;H,L2(D, ρ)) =

√
λn+1 = O

(
n−α/2

)
,

or equivalently,

comp(ε; Λall, H, L2(D, ρ)) = inf
{
n : λn+1 ≤ ε2

}
· $(1).

It is also known that the constant C0 is equal to the square-root of the largest eigenvalue,

C0 =
√

λ1.

One of the results in [23] is the construction of optimal algorithms for the ∞-variate
G-approximation problem which allows to get a necessary and sufficient condition on the
polynomial tractability for general weights γu. Those optimal algorithms are denoted
by Aopt

ε,γ,G and they satisfy (14). Using [23, Thm.4] and Lemma 2, we can conclude the
following result.

For τ ≥ 0 and c ∈ (1/decay(γ), 1), let

Ĉ(τ, c) := C(τ ; γ̂c,λ),

where, as defined in [23],

C(τ ; γ̂,λ) =
∑

u∈Uγ

γ̂u
τ ·

[ ∞∑

j=1

λτ
j

]|u|
=

[ ∑

u∈Uγ

γc
u

]τ
·
∑

u∈Uγ

γ(1−c)·τ
u

·
[ ∞∑

j=1

λτ
j

]|u|
.

Note that Ĉ(τ, c) < ∞ for positive τ and c ∈ (1/decay(γ), 1) implies that the weights γ
satisfy (13).

Let

τ̂(γ,λ) := inf{τ > 0 : C(τ ; γ̂c,λ) < ∞ and c ∈ (1/decay(γ), 1)}.

Theorem 3 Suppose that (16) holds and that there are c ∈ (1/decay(γ), 1) and τ > 0
for which C(τ ; γ̂c,λ) < ∞. Then the optimal algorithms for the G-approximation problem

for functions from Fγ̂c
satisfy

error
(
Aopt

ε,γ̂c,G
;Fγ,L2

)
≤ ε and cost

(
Aopt

ε,γ̂c,G

)
≤ Ĉ(τ, c) · ε−2τ · $(d(ε)).

Here d(ε) is the maximal number of active variables of the functionals used by Aopt
ε,γ̂c,G

and

is bounded by

d(ε) = o(ln(1/ε)) as ε → 0.

In particular, the L2(D, ρ∞)-approximation problem is polynomially tractable with the

tractability exponent

p(Λall) ≤ 2 · τ̂ (γ,λ)

if $(d) = O
(
ek·d

)
for some k ≥ 0. It is weakly tractable if $(d) = O

(
ee

k·d
)
.

13



We specify Theorem 3 for product weights

γu =
∏

j∈u

γj with γj = O
(
j−β

)
for β > 1.

Proposition 4 Let $(d) = O
(
ek·d

)
. If (16) holds and the weights satisfy γu =

∏
j∈u γj

with γj = O
(
j−β

)
for β > 1, then L2(D, ρ∞)-approximation problem is polynomially

tractable with the tractability exponent bounded by

p(Λall) ≤ max

(
2

α
,

2

β − 1

)
.

Additionally, if $(d) = Ω(d), C1 > 0, and the exponents α and β are sharp, i.e., α =
decay({λn}n) and β = decay({γn}n), then

p(Λall) = max

(
2

α
,

2

β − 1

)
.

Proof. Recall that, for product weights, (13) holds for any c ∈ (1/β, 1). Clearly now,
C(τ ; γ̂c, λ) < ∞ for any τ satisfying τ > 1/α and τ > 1/(β(1 − c)). Since c can be
arbitrarily close to 1/β, one needs only τ > max(1/α, 1/(β − 1)). This proves the upper
bound on the exponent p(Λall).

We now show that the exponent is bounded from below by 2/α and 2/(β). The bound
p(Λall) ≥ 2/α follows immediately from the fact that the complexity for the univariate
problem equals min{n : λn+1 ≤ ε2} · $(1). To prove that p(Λall) ≥ 2/(β − 1), we adopt
the proof of [13, Thm.3]. Let

G(N) := sup

{
m∑

j=1

ℓj : m, ℓ1, . . . , ℓm ∈ N such that

m∑

j=1

$(ℓj) ≤ N

}
.

Since $(d) is at least linear in d,
G(N) ≤ c ·N

for a constant c > 0. Consider now an arbitrary algorithm

A(f) =

n∑

j=1

〈f, hj〉Fγ
· aj

with cost(A) =
∑n

j=1 $(Var(hj)) ≤ N . Letting V :=
⋃

j=1Var(hj), we have that |V | ≤∑n
j=1 |Var(hj)| ≤ G(N) ≤ c · N . This means that the algorithm A uses inner-products

that involve at most c · N variables. Consider next h ∈ H such that ‖h‖H = 1 and∫
D
h(t) · ρ(t) dt = C1, and

f ∗(x) =

∑
j /∈V γj · h(xj)

[∑
j 6∈V γj

]1/2 .

14



Clearly, A(f ∗) = 0, ‖f‖Fγ
= 1, and

[e(A;Fγ,L2)]
2 ≥ ‖f ∗‖2L2

= C2
1 ·

∑

j /∈V

γj +
(
‖h‖2H − C2

1

)
·
∑

j /∈V γ2
j∑

j /∈V γj
.

Since γj are ordered, the error of A is bounded from below by
[∑∞

j=G(N)+1 γj

]1/2
=

Ω
(
N−(β−1)/2−δ

)
for any δ > 0. Since A is an arbitrary algorithm, this shows that p(Λall) ≥

2/(β − 1), as claimed. 2

An example was provided in [23] with dim(H) = 1 and general weights, for which
polynomial tractability does not hold even for the G-approximation. In what follows, we
provide an example of a polynomially tractable problem with dim(H) = 1 and general
weights for which decay(γ) = 0. Although this example is very artificial, it shows that
(12) is not needed for some instances of L2-approximation problems.

Example 4 Consider D = [0, 1], ρ(x) = 1, and nested weights

γu =

{
1 if u = [1..|u|],
0 otherwise.

Clearly, decay(γ) = 0. Take K(x, y) = x · y which corresponds to the space of functions
f(x) = c · x. Letting h(x) = x, ‖h‖H = 1 and function in Fγ has the form

f(x) =
∞∑

d=1

cd · hd(x), where hd(x) =
d∏

j=1

xj ,

and ‖f‖2Fγ
=

∑∞
d=1 c

2
d. For given n, we define An(f) by

An(f)(x) :=

n∑

d=1

cd · hd(x).

Of course, this algorithm requires only n samples of f at the points [1; [1..d]] (d = 1, . . . , n),
i.e., the points with the first d coefficients equal to 1, and the rest equal to zero. Hence,
cost(An) =

∑n
d=1 $(d). As for the error of An,

‖f −An(f)‖2L2
=

∥∥∥∥
∞∑

d=n+1

cd · hd

∥∥∥∥
2

L2

≤
∞∑

d=n+1

c2d ·
∞∑

d=n+1

‖hd‖2L2
≤ ‖f‖2Fγ

· 3−n−1

1− 3−1

which implies that error(An;Fγ ,L2) ≤ 3−n/2. For n = n(ε) = ⌈ln(1/(2 · ε2))/ ln(3)⌉, the
error of An is bounded by ε and its cost is bounded by

cost(An) ≤ n(ε) · $(n(ε)).
This yields polynomial tractability even for $(d) = O

(
ek·d

)
for some k, since then

comp(ε) = O
(
ε−k/ ln(3) · ln(1/ε)

)
and p(Λstd) ≤ k

ln(3)
.

Moreover p(Λstd) = 0 if $(d) = o(ed), say $(d) = (d+ 1)r for r ≥ 0.
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Remark 5 We stress that the lack of polynomial tractability in the example in [23] was
due to the fact that dim(H) = 1 and that non-product weights were used. Indeed, we
have polynomial tractability for product weights as long as decay(γ) > 0. This follows
from the fact that for product weights we still have small number d(ε) of active variables
since

γu ≤
c|u|∏
j∈u j

β
≤ c|setu|

[|u|!]β if γu =
∏

j∈u

γj with γj ≤
c

jβ
.

3.3 Standard Information

Using Lemma 2 together with Theorems 3 and 4 from [24], one can derive results for
standard information. We will not provide them here since they are non-constructive and
their derivation is very similar to that of Theorem 3. Instead, we present constructive
results. They follow from Lemma 2 and [24, Thm.7]

Theorem 6 Suppose that the L2(D, ρ)-approximation problem for the space H of uni-

variate functions admits algorithms An, each using at most n function evaluations and

having the error

error(An;H,L2(D, ρ)) = O
(
n−αs/2

)
(17)

for some αs > 0. Suppose that Ĉ(τ, c) > 0 for a positive τ and c ∈ (1/decay(γ), 1),

and that
∑

u∈Uγ
γ̂
κ/2
u,c < ∞ for some κ > 0. Then there are algorithms Aε using standard

information such that

error(Aε;Fγ,L2) ≤ ε

and

cost(Aε) = O
(
$(d(ε)) · ε−(max(2/αs , κ)+o(1))

)
as ε → 0.

As before, the number d(ε) of active variables is bounded by

d(ε) = o(ln(1/ε)).

In particular, the L2-approximation problem is polynomially tractable with the tractability

exponent

p(Λstd) ≤ max

(
2

α s
, κ

)

if $(d) = O
(
ek·d

)
for some k ≥ 0. It is weakly tractable if $(d) = O

(
ee

k·d
)
.

Note that if c ∈ (1/decay(γ) , 1) then

∑

u∈Uγ

γ̂ κ/2
u,c < ∞ for any κ >

2

decay(γ) · (1− c)
.

Since c can be taken arbitrarily close to 1/decay(γ) we conclude the following corollary.

Corollary 7 Let $(d) = O
(
e k·d

)
. If (17) holds then

p(Λstd) ≤ max

(
2

αs
,

2

decay(γ)− 1

)
.
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Before continuing, we make the following remark.

Remark 8 Consider now the following integration problem of approximating

I(f) = lim
d→∞

∫

Dd

∑

u∈Uγ ,u⊆[1..d]

fu(x) · ρd(x) dx.

The theorem yields the existence of algorithms for the integration problem whose error
and cost are bounded in the same way as the error and the cost of algorithms Aε. Indeed,
this clearly holds for cubatures Qε given by

Qε(f) := I (Aε(f)) .

Until now, we had such a result only for product weights, see, e.g., [17].

It was shown in [13] (see also [17]) that the exponent of tractability for the integration
problem with product weights is bounded from below by 2/(decay(γ)−1). Since integra-
tion is not harder than L2-approximation, 2/(decay(γ) − 1) is also a valid lower bound
for the approximation problem. This yields the following corollary.

Corollary 9 Let Ω(d) = $(d) = O
(
e k·d

)
. Suppose that (17) holds and αs is the smallest

possible. Then for product weights γ with decay(γ) = β > 1

p(Λstd) = max

(
2

αs

,
2

β − 1

)
.

For a number of spaces, the exponent α of λj coincide with αs from Theorem 6. If
this is the case then

p(Λall) = p(Λstd).

Moreover, often the errors of optimal algorithms for the integration and L2-approximation
problems over the space H are proportional to n−αs for the same value of αs. Then the
tractability exponents for the L2-approximation and I-integration problems are identical
and equal to max(2/αs, 2/(β − 1)).

This is the case, e.g., for the spaces generated by the Wiener kernel.

Example 5 Let K(x, y) = min(x, y), D = [0, 1], and ρ ≡ 1. It is well known that then
α = αs = 2, and 2 is also valid for the errors of optimal algorithms for the corresponding
integration problem. Hence

p(Λall) = p(Λstd) = p(Λstd, INT) = max

(
1 ,

2

β − 1

)
.
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dimension, J. Complexity 26 (2010), 422-454.

[14] R. Merton, Continuous–Time Finance, Basil Blackwell, Oxford, 1990.

[15] B. Niu and F. J. Hickernell, Monte Carlo simulation of stochastic integrals when the
cost function evaluation is dimension dependent, in Monte Carlo and Quasi-Monte

Carlo Methods 2008, (P. L. Ecuyer and A. B. Owen, eds.), Springer, 2008, pp. 545-
560.

[16] B. Niu and F. J. Hickernell, T. Müller-Gronbach, and K. Ritter, Deterministic multi-
level algorithms for infinite-dimensional integration on R

N, submitted, (2010).

[17] L. Plaskota and G. W. Wasilkowski, Tractability of infinite-dimensional integra-
tion in the worst case and randomized settings, J. Complexity (2011), to appear.
doi:10.1016/j.com.2011.01.006

[18] L. Plaskota, G. W. Wasilkowski, and H. Woźniakowski, A new algorithm and worst
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